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GENERAL INTRODUCTION 

The CsCl-structure (B2) with Pm3ra symmetry is one of the 

most common compound types among binary intermetallic 

compounds. Review of the compilation, Binary Alloy Phase 

Diagram^, published by American Society for Metals in 1986, 

shows that many kinds of phase transitions occur in the 

CsCl-type intermetallic compounds that have been reported 

previously. 

The following gives some examples of high-temperature 

phase transitions in the CsCl-type binary intermetallic 

compounds.! All of these compounds have the CsCl-type 

structure at high-temperature and distorts to the other 

structures on cooling. The low-temperature form of the 

compounds AuCd, AuTi, PdTi, and PtTi (with homogeneity 

ranges) is the AuCd-type orthorhombic structure with Pmma 

symmetry; the low-temperature form of the stoichiometric 

AuDy, AuGd, AuHo, AuTb, and AuTm alloys is the BCr-type 

orthorhombic structure with Cmcm symmetry; the low-

temperature form of stoichiometric AgYb and AuYb, as well as 

the nonstoichiometric DyPd, is the BFe-type orthorhombic 

structure with Pnma symmetry; the low-temperature form of 

the AlPd and AlPt alloys is the FeSi-type cubic structure 

with P2i3 symmetry; the low-temperature form of the NiTi 

alloy is the NiTi-type monoclinic structure with P2i/m 

symmetry; the low temperature form of the LiPb alloy in the 
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homogeneity range is the LiPb-type trigonal structure with 

R3m symmetry. One of the most interesting examples is the 

phase transition observed in the stoichiometric AuNd and 

AuPr systems. The high-temperature CsCl-type AuNb and AuPr 

alloys distort to the BCr-type structure, and further 

transform to the BFe-type structure with decreasing 

temperature. 

In the above examples, no two phase.coexistence in the 

systems with the phase transitions between the CsCl-type -

AuCd-type and the CsCl-type - BCr-type as well as the CsCl-

type - BFe-type has been experimentally found. This means 

that these phase transitions could be second order. The 

nature of the phase behavior in the NiTi system is still not 

quite clear. The phase transition in AlPd and AlPt is first 

order. The CsCl-type LiPb has the lattice parameter a • 

3.563 Â and the trigonal Li?b has the parameters a - 3.5642 

A and a - 89.5°. The phase transition is second order. The 

equilibrium phase relations in the Au-Nd system were not 

determined. However, there is no two phase coexistence in 

AuPr according to the Binary Alloy Phase Diagram.1 This 

lack of coexistence implies that the two step phase 

transitions in both AuNd and AuPr may be second order. In 

order to understand the details of the phase behavior these 

and the other systems discussed above, further 

reinvestigations by a combination of the experimental 

observation and Landau theory^ are necessary. 
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The best-known distortion of the CsCl-type is the phase 

transition to the AuCu-type tetragonal structure under a 

change in temperature and/or pressure. In this research, 

attention was focused on this transition. The phase 

transition has been previously studied in many binary 

intermetallic systems such as in the AuMn, CdPd, HgMn, irMn, 

MnRh, NbRu, NiZn, RhTi, RuV, RuTa, SmTl systems, and so on. 

In addition, the phase transition in the rare-earth 

compounds RM (R - La, Ce, Pr, Nd; M - Ag, Cd, Tl) with the 

temperature effect and the pressure effect as well as the 

alloying effect (RAgj^.^In^ ) was reported by Kadomatsu et 

al.3 Since the properties of these compounds are associated 

with the phase transition, the study of phase behavior has 

led to the development of many new materials. For instance, 

the cubic phase alloys in Au-Mn are antiferromagnetic and 

have Nêel points which correspond closely to the 

temperatures of a cubic-tetragonal (c/a < 1) transition.4 

The subject of the phase transitions in CsCl-type 

intermetallic compounds is not only of interest to 

metallurgists but also to solid state scientists. The 

theoretical work carried out on this subject has been 

reviewed by Kadomatsu et al.3 and Folkerts and Haas.5 in 

the case of the CsCl-type rare-earth intermetallic 

compounds, this phase transition has been considered to 

arise from a band Jahn-Teller effect, by which d bands in 

the 5d6s bands of R are split so as to gain in band 
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e n e r g y .3f6-8 The structural instability in compounds of 

this type is related to superconductivity and magnetic 

properties at low temperature, depending on the character of 

the 5d6s band electrons.General considerations based 

on an expression for the free energy of these compounds 

support the idea of a band Jahn-Teller effect as the driving 

mechanism.® 

The electronic structure of RhTi was studied recently by 

Folkerts and Haas.5 From the band calculation, using the 

augmented spherical wave method, they found that the Ti 3d 

eg band in the tetragonal phase is split to two bands and 

only contains one electron. This is a favorable situation 

for a Jahn-Teller instability. In addition, the energy of 

the compound is lowered by 0.04 eV per unit cell by the 

tetragonal distortion. 

The details of the phase behavior in the systems with 

the CsCl-type structure are currently of theoretical 

interest to our research group because of the application of 

band theory methods to the consideration of symmetry 

breaking transitions. The transition, indicative of strong 

electron-phonon coupling, results in symmetry breaking from 

cubic to tetragonal to orthorhombic symmetry. Previous work 

in a number of systems has led to confused and contradictory 

structural interpretations. Thus it was the purpose of this 

research to study the phase behavior in Au-Mn, Ir-Ti, Nb-Ru, 

Rh-Ti, and RuTa by a variety of crystallographic techniques, 
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including high-temperature X-ray powder diffraction, and the 

Landau theory,2» 12,13 ^.Q provide new, consistent 

interpretations. A knowledge of the phenomenology of these 

transitions will add to our understanding of the 

relationship between electronic structure and crystal 

structure and will provide bases for further testing of 

modern theories of these relationships. 

Although the V-Ir alloys do not have the CsCl-type 

structure and a phase diagram for the system has been 

reported,14 the nature of the phase behavior was uncertain. 

As a result, an investigation of the phase transition in 

VQ.541^0.46 by high temperature X-ray diffraction and Landau 

theory was included in this work. 
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EXPERIMENTAL 

Sample Preparation 

All binary intermetallAc compounds were prepared by 

either th« sealed quartz ampoule method or the arc-melting 

method. The powder samples were made as fine as possible 

(passed through a 325 mesh sieve•(Humboldt Meg. Co., 0.045 

mm)) before the X-ray diffraction measurement in order to 

minimize preferred orientation. The weight of each sample 

was about 4 grams. The purities and the sources of the 

elements used in this research were listed in Table 1. 

Quartz ampoule method 

The Au-Mn samples were prepared from gold powder and 

manganese chips. The manganese chips were cleaned by 10 % 

nitric acid (Mallinckrodt) and rinsed before use with 

distilled water followed by acetone (Fisher Scientific). 

The gold and manganese elements were weighed in the ratios 

Au/Mn = 0.88, 0.97, 1.01, and 1.05 and placed in cleaned 

quartz ampoules. The quartz ampoules were evacuated to 

about 10~® torr residual pressure, then sealed, and finally 

placed in a furnace at 900®C. This temperature was 

sufficient to allow which was a gas (the manganese) ~ solid 

(the gold) reaction, which was sustained for one week. The 

sintered products were filed and the powder was annealed at 

500°C in a sealed quartz ampoule. 
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Table 1 The purities and the sources of the elements 

Elements Purities Sources 

Gold powder 99.95 a 

Iridium powder 99.95 a 

Niobium foil 99.98 a 

Manganese chips unknown b 

Rhodium powder 99.95 a 

Ruthenium powder 99.95 a 

Tantalum foil unknown b 

Titanium foil 99.95 a 

Vanadium foil unknown b 

a - from Alfa Products 

b - from Ames Laboratory 

Arc-melting method 

The Ir-Ti, Ir-V, Nb-Ru, Rh-Ti, and Ru-Ta samples were 

prepared by arc melting the elements. In order to reduce 

mass loss during arc melting, the powdered elements were 

made into the pellets by arc melting and weighed before use. 

The ratios are uncertain to within less than 1 % because 

less than 1.2 % of the total mass was lost in each 

synthesis. The starting materials were melted on a water 
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cooled copper plate in an argon atmosphere. The sample 

pellets were turned over and melted several times to help 

insure homogeneities. The copper plate was cleaned by 

pipetting a few drops of 70.1 % nitric acid (Mallinckrodt) 

into the sample holes on the top of the plate for 1 minute, 

then washed by water to remove CuNOg, and finally by acetone 

(Fisher Scientific). The quenched pellets were powdered in 

an impact mortar (and filed, if needed). The intermetallic 

ratios were taken to be the values calculated from the 

initial weighed quantities of the elements. The absence of 

significant phase impurities was determined by X-ray 

diffraction. The powdered samples were heat-treated in the 

high temperature difftactometer in order to anneal away 

stains and inhomogeneities. 

X-ray Techniques 

Guinier camera 

X-ray powder diffraction using an Enraf-Nonius film 

camera with copper kai (X » 1.540562 A) radiation was 

employed at room temperature. The Guinier camera with a 

focusing monochromator provided high resolution patterns and 

short exposure time. Silicon powder (NBS Standard Reference 

Material 420 a) mixed with the samples was used as a 

standard to determine 20 or d values. The Guinier patterns 

were read using an Enraf-Nonius Guinier film reader. The 
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reading from the Guinier patterns was converted to 29 and d 

values by a least-squares computer program GUIN.IS 

High-temperature X-ray diffractometer 

A Rigaku 8-6 diffractometer equipped with a Btihler 

sample chamber and temperature controller was used for 

studies at elevated temperatures shown in Figure 1. The X-

ray tube with copper radiation (X for ka]_ - 1.5405 A and X 

for k(%2 • 1.5443 A) and the scintillation counter rotate in 

the opposite directions to each other at the speed ratio; 

1:1, meeting the conditions for the focusing method. An 

exit monochromator (graphite single crystal) was used to 

suppress background radiation originating in the specimen 

and the nonmonochromatic nature of the Cu X-ray radiation. 

'.Che high temperature chamber consists of a cylindrical, 

double - walled, water-cooled pot made of stainless steel 

equipped with an irradiation window of beryllium and with a 

lid carrying two pairs of electrodes for heating specimens 

and the environment. The window allows the Bragg angle 

range of 0 < 28 < 180". A UHV turbomolecular pump is 

attached as close as possible to the chamber to maximize 

pumping efficiency. The residual pressure inside the 

chamber was in all cases below 10"^ torr. The water supply 

was used to cool the chamber and the electrodes as well as a 

high-voltage X-ray generator. 

A temperature-program controlled heating of the samples 

(to 2400*0 is possible) with a control system (RE 2400) 
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using WRe-thermocouples, Tungsten - W 3 % and W 25 % (Omega 

Engineering, Inc.). Molybdenum foil (Ames Laboratory, 0.2 

mm thick) and tantalum foil (Ames Laboratory, 0.4 mm thick) 

were used as sample heater and environment heater (8.5 V -

100 A and 8.5 V - 250 A), respectively. 

In this study, divergence slit, scatter slit, receiving 

slit, and monochromator receiving slit were 1°, 1®, 0.30 mm, 

and 0.45 mm, respectively. The samples in the chamber were 

heated or cooled slowly by programming the temperature 

controller at 1 degree per minute in order to reach phase 

equilibrium. All samples in this study were selected for 

careful scans at 16 minutes per 8-degree with 0.02 20-degree 

of the step size in order to obtain high statistic patterns. 
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RIETVELD REFINEMENT 

Rietveld full-profile refinement computer program KDBW 

originally written by D. B. Wiles and R. A. Young^® and then 

modified by Dr. Jacobson's group (Kiml?) was used to aid in 

the interpretation of the X-ray diffraction data. The 

profile method for refining powder diffraction data, 

originally introduced by Rietveld,18,19 has now become an 

important tool for the determination of crystal structures 

since many materials of great interest cannot be made in a 

form suitable for single-crystal techniques. 

In the Rietveld method, structural (for two phases, if 

needed) parameters are adjusted via a least-squares 

refinement procedure until the best fit between the entire 

calculated and observed powder diffraction patterns is 

obtained. The parameters that can be refined simultaneously 

in this program include atom position, atom thermal 

vibrational, preferred orientation, atom site-occupancy, 20-

zero correction, overall scale, overall isotropic thermal, 

profile breadth, profile asymmetry, background function(up 

to 6 parameters), and lattice parameters. 

The Rietveld refinement program in use at ISU allows six 

reflection profile functions: Gaussian (G), Lorentzian (L), 

modified Lorentzian (ML), intermediate Lorentzian (IL), 

pseudo-Voigt (p-V), and Pearson VII (PVII). According to 

Young and Wiles, the Gaussian function was consistently the 
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worst performer, while the the pseudo-Voigt and Pearson VII 

were the best.20 The PVII is given by 

(1 + 4 (2Vm _ 1) x2)-m 

X - ZAGjk/Hk 

where is the full width at half maximum and m is a 

refinable profile parameter. Since the PVII goes from pure 

L with m • 1 to pure G with m it has a characteristic 

between G and L. For this reason, the Pearson VII function 

was selected for this research. 

The definition of the R-factors used in the Rietveld 

refinement program is 

E I I. (obs) - I. (calc) I 
Rp 

«P -

ŵp" 

£ I (obs) 

E I J 1% (obs) - j 1% (calc) I 

E 4 1% (obs) 

E I (obs) - (calc) I 

E Yj^ (obs) 

2 1 1/2 

T 

E Wj^ (Y^ (obs) - Y^ (calc)) 

E Wi ( Yi (obs)) 
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Here Ijç is the intensity assigned to the kth Bragg 

reflection, is the intensity values at each of the i 

steps in the pattern, and is the weight at the ith step. 

Rg (Bragg R-factor) is affected only slightly by background, 

second phase, and the fit of the observed reflection 

profiles. Thus it may be the best indicator of the fit of 

the crystal structure model to the average structure.^0»21 

Therefore, the size of Rg has been used by our group as a 

principal criterion of fit in evaluation of the final 

results. 
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PROGRAMS FOR LATTICE PARAMETER REFINEMENT 

LLR Program 

Introduction 

In powder diffraction, one is frequently faced with the 

need to obtain precise lattice parameters, often in the 

presence of diffraction lines from other materials. Studies 

might be carried out as a function of temperature, pressure 

or composition. Also in the analysis of diffraction 

patterns from uncharacterized materials, one often strives 

to ascertain the validity of some assumed structure, 

possibly using only a few diffraction lines. In order to 

better address such problems, a Fortran computer program,22 

LLR (see Appendix A), was written to carry out linear least-

squares lattice parameter refinement in crystal systems with 

symmetry orthorhombic or higher in this work. In addition 

to lattice parameters, a 20-zero value can also be refined. 

The program has been used in this study for the past two 

years. 

Details of the program 

Input to the program consists of a file containing the 

observed 20 values, and either the indices of a few of the 

diffraction lines, or approximate lattice parameters. 

Based on these initial data, a set of calculated lines 

is generated and the best fit to observed lines within an 
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error window of (given by the user) is obtained. A 20-

zero offset can be employed and can be refined, if desired. 

In order to account for ka^ - kot2 splitting, the 

wavelength employed in the calculation is expressed as the 

following function of 0;23 

2 k ai + k «2 (1 - q) 
X (0) - (0 < 0s) 

3 - q 

tan 0 
q 

tan 0g 

where 0g is supplied by the user. If 0 is greater than 0g, 

X - k(%i. 

A linear least-squares method is used to refine the 

lattice parameters. The trigonometric quantity sin2(0 +6) 

was approximated to sin20 + 5/2 sin20. In the orthorhombic 

case, for example, 

sin^ 0 - U h^ + V k^ + W 1^ - 5/2 sin 20 

\ 2 \ 2 \ 2 
where U - *• , V » * , and W = «• . The program 

4 4 4 

then proceeds to solve 
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U E hj + V E k^h? + W E ijh? -52 f.hj = Z g^h? 

U Z h^k? + V E kj + W E ijkj - 5 E f^k^ = E g^k? 

U E hjlj + V E k^l^ + W E if - 8 E f^l? = E g^l^^ 

U E + V E kjf^ + W E kjf^ - S E fJ - E g^f^ 

where f - 1/2 sin 20 and g - sin^e, to obtain the parameters 

a, b, and c. 

The refinement process can then be repeated through n 

cycles, where n in specified by the user, the maximum 

allowed error is decreased on each cycle by setting 

Em - O.gn-lEi 

Results 

The Tables 2 and 3 present selected input and output, 

respectively, in the application of this program to a AuMn 

two phase systems. The observed data were collected on a 

Rikagu X-ray diffractometer at room temperature.24 

Refinement of the tetragonal phase with c/a > 1 was carried 

out first and the 2@-zero was also refined. Then the 

tetragonal phase with c/a < 1 was refined; here the 20-zero 

was now fixed at the value obtained from the refinement of 

the first phase. 
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For comparison, the same pattern was also refined via a 

Rietveld procedure which yielded a - 3.170(7) and c • 

3.299(3) A for the tetragonal phase with c/a > 1 phase. The 

20-zero was found to be -0.494°. These results are in 

excellent agreement with those obtained by this program. 

Table 2 Application of the refinement program to a AuMn two 

phase system; Run parameters 

(i) First phase; 

29-zero: 

tetragonal (c/a > 1) 

0 . 0  

20-zero refinements Yes 

Error limit: 0.4 

No. of cycles: 15. 

(ii) Second phase: 

20-zero; 

tetragonal (c/a < 1) 

-0.462a 

20-zero refinement: No 

Error limit: 0.2 

No. of cycles: 5 

®From refinement of (i) above. 
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Table 3 The results of lattice parameter refinement for a 

two phase AuMn system 

(i) First phase: tetragonal (c/a > 1) 

Parameters (A); a = 3.166(2) c - 3.298(6) 

29—zero: —0.462 

Standard deviation in 26: 0.0271 

No. h k 1 obs-28 cal-26 |û2e| obs-sin^e cal-sin^e 

2 1 0 0 28.158 28 .167 0.009 0 .05918 0. 05921 

5 1 0 1 39.458 39 .415 0.043 0 .11395 0. 11372 

7 1 1 0 40.218 40 .248 0.030 0 .11820 0. 11837 

8 1 1 1 49.158 49 .142 0.016 0 .17301 0. 17291 

9 0 0 2 55.698 55 .684 0.014 0 .21822 0. 21812 

11 2 0 0 58.198 58 .231 0.033 0 .23651 0. 23675 

13 1 0 2 63.538 63 .553 0.015 0 .27720 0. 27731 

15 2 0 1 65.358 65 .327 0.031 0 .29153 0. 29128 

16 1 2 0 65.878 65 .913 0.035 0 .29566 0. 29566 

19 2 1 1 72.618 72 .599 0.019 0 .35063 0. 35047 

22 0 2 2 84.838 84 .822 0.016 0 .45501 0. 45487 

24 0 0 3 88.918 88, .943 0.025 0, .49056 0. 49078 
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Table 3 (continued) 

(il) Second phase; Tetragonal (c/a < 1) 

Parameters (A): a • 3.271(5) c - 3.096(6) 

20-zero: 0.000 

Standard deviation in 20: 0.0297 

No. h k 1 obs-20 cal-20 |A20| obs-sin^O cal-sin^O 

1 1 0 0 27 .238 27 .244 0 .006 0 .05544 0. ,05547 

3 0 0 1 28 .798 28 .813 0 .015 0 .06184 0, 06190 

6 1 0 1 39 .998 40 .060 0 .062 0 .11697 0. 11731 

8 1 1 1 49 .148 49 .119 0 .039 0 .17301 0. 17275 

10 2 0 0 56 .178 56 .187 0 .009 0 .22169 0. 22176 

12 0 0 2 59 .638 59 .669 0 .031 0 .24727 0. 24750 

13 2 1 0 63 .538 63 .538 0 .000 0 .27720 0. 27720 

14 2 0 1 64 .378 64 .359 0 .019 0 .28378 0. 28363 

17 1 0 2 66 .798 66 .789 0 .009 0 .30301 0. 30294 

18 2 1 1 71 .178 71 .225 0 .047 0 .33869 0. 33907 

20 1 1 2 73 .538 73 .546 0 .008 0 .35831 0. 35838 

21 2 2 0 83 .538 83 .513 0 .025 0 .44373 0. 44351 

23 0 2 2 86 .498 86 .475 0 .023 0, .46946 0. 46926 
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MONO Program 

In addition to the LLR program, another computer 

program, MONO (see Appendix B), written in Fortran also has 

been developed. It is used to refine the parameters for 

monoclinic symmetry by a Gridls least-squares method using a 

procedure similar to that of the LLR program. 
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THEORY OF PHASE TRANSITIONS 

Phase transitions occur as responses to changes in 

state, e.g., temperature, pressure, or composition, and can 

be classified as first- and second-order by considering the 

behavior of thermodynamic quantities like entropy, volume, 

heat capacity, etc. Broadly speaking, phase transitions 

which occur without the coexistence of two phases, i.e., 

without the nucleation and growth of the new phase, are 

second order, otherwise the transition is first order. 

Thermodynamics 

In first-order transitions, the first derivatives of the 

Gibbs free energy with respect to temperature and pressure 

exhibit discontinuous changes. Therefore, since 

3 G 
( ) « - S 

3 T P 

and 

3 G 
( ) = V 

3 P T 

first-order phase transitions involve discontinuous changes 

in entropy and volume. At the transition temperature, Tj., 

6 G - 0, and then 
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A S 
A H 

T 

In a second-order phase transition, the second 

derivatives of the free energy show discontinuous changes; 

8^ G 

9 

3^ G 

3 P 3 T 

- V 0' 

) - V a' 

( 
3^ G 

3 ^P 

- C, 

Here Cp, a', and (3' are the heat capacity, volume thermal 

expansibility, and compressibility, respectively. Second-

order transitions involve continuous changes in entropy and 

volume. The description of the thermodynamics at second-

order transitions in systems with variable chemical content 

is the Gibbs-Konovalow (G-K) e q u a t i o n ; ^ ^  

3 T 

3 X* P 

r  3 

L a X - 1  4 — 1  X* _ L 3 X* J 
T,P B T,P J 

A X 

A S + ( ) A X 

where a and g label two phases, each containing the same 

two components, A and B, /j is the chemical potential, A X is 
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the differences in the mole fraction of A in the two phases 

separated by a two-phase region enclosed by the boundary 

and A S and S™ are the difference in molar entropy of the 

phases and the partial molar entropy of A in a, 

respectively. Applying this equation to a second-order 

transition that occurs with changing X shows that A S - 0 

because ( 9 p / 3 X )T,P * ( 3T/9 X^<* )p M 0, and A X 

- 0. In addition, the continuity of the process also means 

that A V - 0. An experimental distinction between first-

and second-order phase transitions is provided by the 

observation of the presence or absence of a coexistence of 

two phases in equilibrium. Usually, a first-order phase 

transition is easy to detect. However, if the temperature 

range of the coexistence of two phase is quite narrow, and 

if a relatively long time is required to reach phase 

equilibrium, the distinction is very difficult. Strictly 

speaking, it is impossible to run an experiment with the 

temperature difference between two steps arbitrarily small 

in magnitude and to take arbitrarily long time to reach 

phase equilibrium. Fortunately, Landau theory of symmetry 

and phase transitions^» 12,13 provides a method to help 

distinguish between these two types of phase transitions. A 

discussion of Landau theory follows. 
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Landau Theory 

A phase transition is associated with a change in 

symmetry at a certain thermodynamic state. Considering the 

thermodynamic quantities of a crystal for a given deviation 

from the symmetric state. Landau introduced the concept of 

an order-disorder parameter, ïi, and expressed the free 

energy, G, of the low-symmetry structure as a Taylor's 

series in for second-order and some cases of first-order 

transitions, as follows: 

G  -  G *  +  a h + A h ^  +  B ï l 3  +  C ) n ^  +  

where a. A, B, C, ... are functions of P and T and G° is the 

free energy of the high-symmetry structure. Here, % = 1 in 

the completely ordered phase (at low temperature) and M = 0 

in the completely disordered phase after the transition. 

Since a-( 8G/3h)m and G must be at a minimum at 
^t 

ri • 0 if the state when ri « 0 is stable at the transition 

point, it follows that a must be equal to zero. Thus the 

expansion of G becomes 

G - G* + A + B n3 + c n* + 
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and if follows that A > 0 when = 0. Consider what 

happens when A goes to zero (e.g., with temperature). If B 

does not vanish, 3(G-G°)/3h = 0 has two solutions indicating 

that there are two minima. If different G values correspond 

to an absolute minimum at h = 0 (stable) and a relative 

minimum at % K 0 (metastable) then = 0. As A decreases 

the G values at the two minima approach equality and when 

they are equal the two phases at r) = 0 and K 0 are in 

equilibrium. This is the case of a first-order p^ase 

transition. Therefore, B must vanish for symmetry reasons 

if a second-order transition occurs. Hence, we have 

G = G° + A ^2 + C ^4 + 

for second-order transition. Here A > 0 for the high-

symmetry phase and A < 0 for the low-symmetry phase; C > 0 

for both. A vanishes at the transition point. 

Landau t h e o r y ^ 2 , 1 3  provides four conditions that a phase 

transition must meet in order that it be possible for the 

transition to occur continuously: 

1. the space group of two structures related by such a 

transition must be in a group-subgroup relationship; 

2. the difference in the particle density functions of 

the two structures must be a basis function, or a 

combination of basis functions, of an irreducible 
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representation (irr. rep.) of the higher symmetry 

space group; 

3. it must not be possible to form a totally symmetric 

third-order combination of such basis functions; 

4. the space lattice of a low-symmetry structure must be 

locked in by symmetry (otherwise the low-symmetry 

structure is Incommensurate). 

The fourth condition (Lifschitz condition) must be 

tested by determining directly whether the antisymmetric 

square of the representation, times the vector 

representation of G"-, V(g), contains the totally symmetric 

r e p r e s e n t a t i o n ;  

E tx2(g) - X(g2)] V(g) = 0 

where g are the elements of G, and X(g) are the characters 

of the representation. 

The approach described here is to assume on the basis of 

temperature dependent X-ray diffraction patterns that the 

distorted and/or ordered structure is formed from the high-

symmetry structure via a second-order transition. This 

assumption limits the lattice, space groups and structures 

that must be considered. If a solution to the structure is 

found it follows that the transition could have occurred by 

a second-order transition. 
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One of the starting points of Landau theory is the 

consideration of a particle density function which gives the 

probability distribution of the atoms in the crystal. The 

density function, p, of the low-symmetry structure can be 

expressed in terms of that of the high-symmetry structure, 

p", and the distortion functions, ^2» •••> which are 

basis functions for an m-dimensional irr. rep. of the high-

symmetry space group: 

p " p° + Z Ci " p° + Z ( Yi *1 ) *1. 

Here - Z Ci^, - hvi» and Z • 1. Since p -> p° as 

Ci's -» 0, the Gibbs free energy of a general distortion is 

expanded to the fourth-order in the coefficients of the 

G - G° + A %% + Z Cj fj4(Yi) 

The function fj^(Yi) is an invariant of the 4th order 

constructed from the yi's since G must be invariant under 

symmetry operations and the sums with respect to j contain 

as many terms as there are independent invariants of the 

fourth-order. To determine the stable state solutions it is 

necessary to minimize G with respect to the yi's subject to 

the restraint E yi^ = 1. Since the invariance under 

consideration includes invariance with respect to the space-
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group operations that do not include pure translational 

operations as a factor (called the essential symmetry 

operations) as well as with respect to translational 

symmetry operations, it is necessary to consider the 

behavior of the basis functions under the essential symmetry 

operations. The essential symmetry operations can be 

divided into two sets - those the rotational parts of which 

carry a wave vector in the star into another wave vector in 

the star, and those the rotational parts of which carry the 

wave vector into itself modulo a reciprocal lattice vector. 

The latter set is called the group of the wave vector, even 

though it is not a group in every case. The rotational 

parts of the group of the wave vector together form a point 

group called point group of the wave vector. 

There are published tables^S of matrices that are called 

"small representations" that show how the basis functions 

behave under the essential symmetry operations in the group 

of the wave vector. As with irr. reps, of point groups, 

with which the small reps, are sometimes isomorphous, the 

matrices may be one-dimensional or have a higher 

dimensionality. The total dimension of an irr. rep. is the 

product of the dimension of the small rep. and the number of 

vectors in the star. 

A superlattice is determined by the specification of a 

wave vector, or set of wave vectors, in the following way; 

all translational symmetry operations the vectors of which 
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when dotted with the wave vector(s) yield an integer remain, 

all others are lost. For example, if the wave vector is k • 

b*/2 and T » ma + nb + pc, then k'T = n/2 and only those 

translations with n even remain. The functions cos(2nk*r) 

or exp(2iiikT) are bases for irreducible representations of 

the translational subgroup, e.g., with k - b*/2, cosny which 

is symmetric for even n and antisymmetric for odd n 

translations, results. The fourth condition of Landau 

theory restricts possible wave vectors to which a second-

order transition can correspond to the high-symmetry points 

of the first Brillouin zone. It is necessary to consider 

all possible combinations of vectors forming a star 

corresponding to a particular high-symmetry point. 

For example, if the high-symmetry structure is CsCl-type 

then the high-symmetry points shown in Figure 2 are r(k « 

0), X(k - ±a*/2, ±b*/2, ±c*/2), M[k - ±(a* + b*)/2, ±(a* + 

c*)/2, ±(b* + c*)/2], and R[k - (a* + b* + c*)/2, (-a* + b* 

+ c*)/2, (a* - b* + c*)/2, (a* + b* - c*)/2]. If the 

transition corresponds to F then the only possible lattices 

are those that can continuously transform into the simple 

cubic lattice of the CsCl-type structure (simple cubic 

lattice with a » a°) without change in the number of lattice 

points. The symmetry change of any transition corresponding 

to F does not include translational symmetry and no 

superstructure results. On the other hand, if k * 0 

superlattice can result. Examples of a transition at the F 
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point corresponding to the 3-dimensional small reps., and at 

the M point corresponding to the 2-dimensional small reps, 

in Pm3m will discuss below. 

Space-lattices that can result from a second-order phase 

transition can be determined as follows 

1. determine the high-symmetry points in reciprocal 

space; 

2. determine the wave vectors in the star at each point; 

3. determine whether third-order combinations of basis 

functions can be translationally invariant; 

4. if there are translationally invariant third-order 

combinations then determine whether these 

combinations are also invariant to essential symmetry 

operations; 

5. if there are third-order invariants the point need 

not be considered further; 

6. if there are none examine the fourth-order invariants 

subject to E Yi^ " 1 and identify the combinations 

associated with minima; 

7. from the solutions to the minimization of the fourth-

order term the combinations of wave vectors to which 

possible superlattices correspond are found, these in 

turn yield the superlattice vectors by retaining 

those vectors which when dotted with the wave 

vector(s) yield an integral multiple of 2n. 
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Figure 2 Symmetrical unit cell for the simple cubic lattice 
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An example of a transition at r point 

As examples of space-group determination consider the 

case of the 3-dimensional small representations at r (k - 0) 

point in the Pm3m point group. There are four 3-dimensional 

small representations isomorphous with Tig, T2g, T^y, and 

T2u of the point group 0^. The products of the 

antisymmetric squares of the 3-D Irr. reps, at the F and the 

vector representation do not contain the totally symmetric 

representation. Therefore, the four irr. reps, meet the 

fourth condition. Furthermore, three of the four irr. reps, 

(not Tig) change the sign of an odd number of the three 

basis functions under some symmetry operations and thus no 

third-order invariant exists in these cases. 

Next, irr. reps, allowed by the fourth-order term should 

be determined. Recalling that Z Yi^ " 1, it follows that 

(E Yi2)2 _ g Yi^ + 2Zi<j Yi^Yj^ = 1. If, as is frequently 

the case, and is true for the case under consideration, no 

symmetry operation takes into then the two terms 

Z Yi'^ and ïi<j Yi^Yj^ are independent fourth-order 

invariants and, using (E = 1, the two fourth-order 

invariants can be taken to be a constant plus L Yi^Yj^ or a 

constant plus E Yi^. Thus, to terms of fourth order (in the 

absence of a third-order term): 

G = G* + AJi^ + [Cl + C2(YI^Y2^ + + Yl^YS^)]^^ 
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and the possible space lattices are found by minimizing G 

with respect to the vi subject to the constraint E yi^ • 1. 

On one hand, if C2 > 0, then G is minimized if Yi^Yj^ " 

0, which is the case yi " 1 and y2 " Y3'" 0. Thus, a stable 

structure is given by 

p - p° + n+i-

On the other hand, if C2 < 0, then the fourth order term is 

minimized by maximizing Z Yi^Yj^ subject to the constraint 

Z Yi^ " 1. This maximum is found by the method of 

undetermined multipliers to be given by Yi - Y2 " Y3 " 1//3, 

and the particle density is; 

P " P° + (*i + +2 + *3)n//3. 

In the T^g case, a single basis function, for example 

, transforms into itself under the symmetry operations E, 

^2x' ̂ 2(z—y)' ̂ 2(z+y)' *^x' ®z—y ®z+y yield the 

space group Pmmm. The basis function *1 + *2 + *3 

transforms into itself under the symmetry operations E, 

2^3(x+y+z)' ̂ 2(y-x)' ̂ 2(z-y)' '-2(z-x)' ^Sgfx+y+z)' *y-x' 

Oz-y and Og.* to yield space group Rim. However, as 

discussed above, in this case there exists a third-order 

invariant. For example, the functions (*i, <f>2/ *3) 

transform into (*i, -*2» -*3) under the symmetry operation 
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C2x and thus the third-order combination *1*2*3 transforms 

into itself. Therefore, the space group Rim is eliminated. 

In the T2g case, the basis function transforms into 

itself under the symmetry operations E, C2x» 204%, i, 

and 284% to yield the space group P4/m. The basis function 

*1 + *2 + *3 transforms into itself under the symmetry 

operations E, 2C3(x+y+z), i, and 2Sg(x+y+z) to yield space 

group Rl". 

In the T^y case, the basis functions *1 transforms into 

itself under the symmetry operations E, C2x/ C2(z-y)' 

C2(z+y)' 'y °z' 2S4x to yield the space group I?m2. 

The basis function *1 + *2 + *3 transforms into itself under 

the symmetry operations E, ZCgfx+y+z), C2(y_x)» C2(z-y), and 

C2(z-x) to yield the space group R32. 

In the T2u case, the basis *1 transforms into itself 

under the symmetry operations E, C2x» 2C4x' ®y' ®z' *z-y' 

and Og+y to yield the space group P4mm. The basis function 

*1 + *2 + *3 transforms into itself under the symmetry 

operations E, 2C3(x+y+z)' °y-x' *z-y' and ag-x to yield the 

space group R3m. 

A previous paper^G reported that the alloy LiPb has a 

rhombohadral lattice with space-group symmetry R7m and the 

lattice parameters a « 3.542 A and a = 89*30' at room 

temperature, and that it transforms continuously to the 

CsCl-type structure with increasing temperature. However, 

application of Landau theory to the transition at the r 
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point, as discussed above, shows that the space-group 

symmetry of the low-temperature form of LiPb must be RSm 

with two atomic positions at x, x, x (~0, ~0, ~0, and ~l/2, 

~l/2, ~l/2) and a = a* if the phase transition is to be 

second order. The two space groups r7 and R32 are 

consistent with distortion of the CsCl-type structure only 

with atoms in 0, 0, 0 and 1/2, 1/2, 1/2, i.e., in the 

positions of Rim symmetry which was shown to imply a third-

order in invariant. 

An example of a transition at M point 

There are two 2-dimensional small representations at the 

M-point in PmSm, Eg and E^. One for Eg is shown in Table 4, 

and another for E^ is equal to Eg x 

Table 4 Two-dimensional small representation at the M-point 

E ^4z C2z C2x ^2(y-x) ̂ 2y ^2(x+y) 

i sL S4z 'x *y-x 'y (T x+y 

c:' 
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For these 2-dimensional irr. reps., the fourth condition 

of Landau theory must be tested first. This consideration 

is carried out for the 2-D small rep. at the M-point in 

Table 5. The conclusion from Table 5 is that the vector 

rep. and antisymmetric square of the small rep. are 

o r t h o g o n a l  f o r  t h e  E g  a n d  r e p s .  ( E  V ( g ) • { ( g ) - X ( ) }  =  

0) and therefore the product does not contain the vector 

representation, and hence the fourth condition is met by the 

2-D small rep. at the M-point. 

Table 5 Fourth condition of Landau theory at the M-point 

g E 2C4 C2 2C2' 2C2 " i 2S4 2 CTy 2ffd 

g2 B 2C2 E 2E 2B E 2C2 E 2E 2E 

x(g) 2 0 -2 0 0 2 0 -2 0 0 

x(g2) 2 —2 2 2 2 2 -2 2 2 2 

x2(g) 4 0 4 0 0 4 0 4 0 0 

x2(g)-x(g2) 2 2 2 — 2 -2 2 2 2 -2 -2 

V(g) 3 1 -1 -1 -1 -3 -1 1 1 1 

v(g)'{x2(g)-x(g2)) 6 2 -2 2 2 -6 -2 2 —2 -2 

E V(g).(x2(g)-x(g2)) - 0 

If a transition corresponds to the wave vector k = (a* + 

b*)/2, the basis functions are antisymmetric with respect to 
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the translational symmetry operations, a" and b°, and 

symmetric with respect to a° + b" and c°. 

In the Eg case, the allowed symmetries of the low-

symmetry structure can be determined by examining basis 

functions that transform as the irr. rep.; 

- sin nx cos ny sin 2nz 4)^ 

*2 - sin ny cos itx sin 2riz 

and 

«(•t - (cos2rtx - cos2jiy) ( cos2ny - cos2Jtz) ( cos2iiz - cos2rex) 

There are no third-order invariant combinations of these 

functions. For example, the basis function <J>i -> -*2 and ^2 

•* *1 under the operation of C42, and thus *1^ + *2^ ^ *2^ -

and *1*2^ + -+ *1*2^ - *1^*2. As a result, the 

third condition of Landau theory is met. 

There are two independent fourth-order invariants, 

namely + *2^ and thus two fourth-order terms 

in the expansion of the Gibbs free-energy. Thus, making use 

of Yi^ + Y2^ - 1, G to terms of fourth-order is: 

G - G° + An^ + [Ci + C2(Yl4 + Y24)]n4 

There are two possible minima for this G, namely yi • 1 

and Y2 • 0 (or vice versa) and yi =Y2 ® 1/42. For the first 

solution, the single basis function *1 transforms into 
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itself under the operations E, C2y, i and »y and also under 

the operations 02%, C]*» and or^ when those operations are 

combined with a lost translation, a" or b°. The resultant 

space group is Cmraa with the lattice parameters a « b = 2a° 

and c a a°. For second solution, the basis function *1 + 4»2 

transforms into itself under the operations E, C2(y_x)» i, 

and ffy_x and also under the operations €2%, C2(x+y)' and 

ffjj+y when those operations are combined with a lost 

translation, a" or b". The resultant space-group symmetry 

is Pmna with the lattice parameters b = a* and a = c = /2a°. 

Since neither of these results correponds to a known 

structure the analysis of the Eg case is terminated here. 

In the E^ case, a complete analysis is given. Two basis 

functions corresponding to the Ey irr. rep. at k « (a* + 

b*)/2 are: 

- sin nx cos iiy 

*2 " sin ny cos nx 

and the other four basis functions corresponding to the rest 

wave vectors in the star, (a* + c*)/2 and (b* + c*)/2 are: 

<|>4 - sin HZ cos nx 

*3 - sin ÎIX cos iiz 

and 

*5 - sin iiy cos nz 
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+g - sin HZ cos ny 

respectively. 

Next it is necessary to consider the third-order 

invariants. Since the basis functions -*1 under the 

operation of inversion through the origin, no third-order 

invariant exists. 

The following independent fourth-order invariants are 

found: 

1. *1^ + *2^ + *3'^ + *4^ + + *g4 

2, + *52*g2 

3. *1^*32 + *32*^2 + *1^*52 + *2^*4^ + + *22*g 

4. + *2^*52 

5. *l2*g2 + *22*22 + *^2*52 

Since (E - E yf + 2 E " 1, the E yf term can 
1 1 i<j 1 D 1 

be eliminated. Thus the expansion of the Gibbs free-energy, 

G, to terms of fourth order, is expressed by 

G • G" + Ar|2 + [Ci + ( yi^y2^+Y3^Y4^+y5^y6^)^2 

+ (Yi^y3^+Y3^y5^+yi^Y5^+Y2^Y4^+y4^y6^+Y2^Y6^)C3 

+ (Yi^Y4^+r3^Y6^+Y2^Y5^)C4 

+ (YI^Y6^+Y2^Y3^+Y4^Y5^)C5]1I'^, 
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and the possible stable space groups are found by minimizing 

G with respected to the vi under the constraint E " 1. 

This can be accomplished using Lagrange's method of 

undetermined multipliers. The following equations are 

obtained 

X Y I  +  C 2 Y 1 Y 2 ^  +  C 3 Y I ( Y 3 ^  +  Y 5 ^ )  +  C 4 Y I Y 4 2  +  C G Y I Y G ^  -  0  

XY2 + C2Y2Y1^ + C3Y2(Y4^ + Yg^) + C4Y2Y5^ + Cgy^Yg^ - 0 

XY3 + C2Y3Y4^ + C3Y3(yi^ + Yg^) + €4x3x6^ + ̂ 5x3x2^ " 0 

XY4 + C2Y4Y3^ + C3Y4(Y2^ + Yg^) + C4Y4Y1^ + C5Y4Y52 = 0 

XY5 +  C2Y5Yg2  +  C3Y5(YI^  +  Y3^)  +  C4Y5Y2^ +  C5Y5Y42  =  0  

XYg + C^YgYgZ + C3Yg(Y2^ + Y4^'  + C^YgYS^ + CgYgYl^ = 0 

Yl^ + Y2^ + Y3^ + Y4^ + Y5^ + Y6^ - 1 

where X is the undetermined multiplier. These equations can 

be solved step by step to setting different sets of Yi's to 

zero. These are two types of solutions, "discrete" and 

"continuous". All nonzero yi in the case of discrete 

solutions are equal, but they are not equal in the case of 

continuous solutions. The discrete solutions are listed 

below; 

1. Y^- 1/ Yi^i" 0; C^> 0 

2. Yi" Yg" 1/^2, Yi>2- 0; C2< 0, C.,2> 0 

3. Yj^- Y4- 1/42, Y2" Yg-  Yg= Yg- 0; C^< 0, 0 
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4. Y^- Yg- 1/^2, Y2" Yg- Y4- Yg- 0; Cg< 0, 0 

5. Y^- Y3- Yg- 1/^3, Y2" Y^= Yg- 0; C2< 0, 0 

6. Y^- 1/^6; (Cgf 2C3+ C4+ Cg)/3 < C^, C^, Cg, and 

4C3/3. 

The symmetry of the first solution (for the transition 

corresponding to a single wave vector k - (a* + b*)/2) can 

determined by examining the single basis function *1. The 

basis function *1 transforms into itself under the 

operations E, €2%' ®y and and also under the operations 

C2y, C2z, i and when those operations are combined with a 

lost translation such as a° or b°. The resultant space 

group is Cramm with the lattice parameters a « b « 2a° and c 

a a*. 

The second solution can be determined by examining the 

combination of basis functions «(n + ^2' The basis function 

<I>1 + *2 translation into itself under the operations E, 

^2(x+y)' and Oy_x and also under the operations Q2z' 

C2(y_x)/ i and <Tx+y when those operations are combined with 

a lost translation such as a" or b°. The resultant space 

group is Pmma with lattice parameters a = c = /2a° and b = 

a*. The known example for this case is AuCd which has a 

high-temperature form with the CsCl-type structure and a 

low-temperature form with Pmma symmetry. The parameters for 

the low-temperature are a = 4.7644 A, b «• 3.1540 k, and c = 



www.manaraa.com

43 

4.8643 A with atomic positions at 1/4, 1/2, 0.812 and 1/4, 

1/2, and 0.313.27 

The remainder of the solutions can be determined by the 

procedure described above. The low-symmetry structures for 

these solutions have space-groups l4/mmm, l4/mmm, 123, and 

R3m, respectively, with a = b = c « 2a*. 

The continuous solutions are found to be combinations of 

two discrete solutions. For example, the combination of the 

Y1 " Y2 " 1//2 and the yi • Y4 " 1//2 is yi ^ Y2 ^ Y4 ^ 0 

and Y3 - Yg " Yg - 0. The possible space groups are found 

by minimizing G with respected to Yi under the constraint E 

Yi^ - 1, just as in the discrete cases. For example, the 

following equations are obtained for the case n» Y2» and y4 

M 0 and all other yi " 0; 

X + C2Y2^ + C4Y42 - 0 

X + C2YI^ + C3Y42 - 0 

X + C3Y2^ + C4Yi2 - 0 

Thus the continuous solution for the case are: 

\ - (C2C3+ c c + 
3 4 V4' 

1 n
 

to
 
to
 

2 
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where the vi' s are functions of state because the C^'s 

are. For some choice of the C^'s these n's yield a G lower 

than for any discrete solution, insuring that the continuous 

solutions correspond to minima as well, perhaps, as saddle 

points. For the case of negative C2, C3, C4 and positive 

C5, if C2 is sufficiently negative then the stable solution 

is the discrete solution n • Y2 • 1//2 with Pmma symmetry, 

if C4 sufficiently negative then the stable solution is the 

discrete solution yi • Y4 with l/4mmm symmetry, and if C3 < 

3C2/4 and 3C4/4 then the stable solution is the discrete 

solution Yi " Y2 • T3 • 1//3 with 123. The low-symmetry 

structure for the continuous solution with yi» Y2» and y4 

nonzero is P2/m with a = b = c « 2a° and this symmetry with 

G - G° + An^ + (Ci + is stable when C < C2/4, C4/4, 

and C3/3. Similarly, the continuous solutions for the 

combination of nonzero rit Y2 and yg and yi» Y4» and Yg can 

be obtained. The low-symmetry forms for these two case are 

P2/m and Pmra2, respectively, with a = b = c « 2a®. 
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SECTION I PHASE TRANSITIONS IN THE MNI+XAUI+Y 

HOMOGENEITY RANGE 
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INTRODUCTION 

The crystal structures and the phase diagrams of gold-

manganese alloys in the equiatomic region have been largely 

determined by the measurement of X-ray diffraction, neutron 

diffraction, microscopy, magnetic susceptibility, electrical 

resistivity, and thermodynamic properties. Most of the 

previous papers showed that the AuMn alloy has the CsCl-type 

structure at high temperature and it distorts to 

antiferromagnetic tetragonal material, t^, with c/a < 1, and 

also t2, with c/a > 1 on cooling. In addition, below 240°C, 

an orthorhombic AuMn was reported by Stolz and Schubert.1 

The constitution in the region 45-55 atomic % Au is 

rather complex. Although many phase diagrams^-^O with a 

CsCl-type phase Au-Mn have been reported, a satisfactory 

construction based on the available data has not been 

obtained. The construction of the phase boundaries in the 

phase diagrams mentioned above is unusual. Analysis of the 

boundaries using the Gibbs-Konovalow equation^l and the 

Landau theory^2,13 of symmetry and phase transitions 

indicates some unresolved problems. 

The previously accepted phase diagram^'® showed the 

CsCl-type phase to distort to t^ by a second-order 

transition. On further cooling, alloys containing less than 

50 atomic % Au underwent a first-order transition to t2. 

The diagram shows that the t^ •* t2 phase transition under a 
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change in temperature is first order but in composition 

second order. 

The currently accepted phase diagram^ (Figure I-l) for 

the Au-Mn system shows the formation of two tetragonal 

forms, ti with Au/Mn > 1 and t2 with Au/Mn < 1, at low 

temperatures and a CsCl-type cubic form, c, at high 

temperature in the region 0.9 < Au/Mn < 1.1 and T < 200'C. 

According to the phase diagram, there is no two phase region 

separating t^ and t2, and, therefore, the phase transition 

between t^ and t2 should be second order. Since both t^ and 

t2 have AuCu-type structure with P4/mmm symmetry, during a 

continuous transition from t^ to t2 the phase must pass 

through a cubic system with Pra3m symmetry. However, no 

cubic phase is shown in the phase diagram between the two 

tetragonal phases. A transition from Pm3m to P4/mmm without 

loss of translation symmetry involves a decrease by a factor 

of 3 in the number of symmetry elements, a factor which 

requires a third-order invariant in the order parameter, 

which in turn requires a first-order transition. In 

addition, the slope, ( 3 T / 9 )p, of the T-X phase 

diagram is infinity. In contrast, applying the Gibbs-

Konovalow equation to this case indicates the slope should 

not be infinity because 6 X - 0 and A S = 0 if the 

transition is second-order. Therefore, a study of the Au-Mn 

system in the region 0.88 < Au/Mn < 1.05 was undertaken 
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using high-temperature powder X-ray diffraction to study the 

phase equilibria.14 
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RESULTS 

As mentioned above, the X-ray analysis for the Au-Mn 

system in this study was complex because c, t^, and t2 have 

diffraction peaks at nearly the same Bragg angles and 

because two phase fields, c-ti and ti-t2, are quite narrow 

in some regions. The difficulties of the X-ray analysis 

have resulted in many mistakes in previous investigations of 

the Au-Mn system, in this study, the intensities of the 

diffraction lines were carefully analyzed between room 

temperature and 150°C with 3=0 per step in order to identify 

the one- and two-phase regions. For example, the intensity 

of the {101} diffraction line is twice as large as that of 

the line {110} for a single tetragonal phase. 

By careful investigation, it was found that the CsCl-

type AuMn distorts to a tetragonal structure with c/a < 1 

and further distorts to another tetragonal structure with 

c/a > 1 on cooling as shown in Figure 1-2. Some calculated 

and observed X-ray diffraction patterns in the Au-Mn system 

are shown in Figures 1-3, 1-4, and 1-5. The diffraction 

patterns for Au/Mn « 1.01 at 600°C in Figure 1-3 are an 

example of the CsCl-type cubic with a = 3.2423 A. The 

diffraction patterns for Au/Mn <= 1.05 at room temperature in 

Figure 1-4 are an example of the AuCu-type tetragonal, t^, 

with a - 3.2627 A and b - 3.1375 A. The diffraction 

patterns for Au/Mn - 1.01 at room temperature in Figure 1-5 
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are mixture of t^ and t2 with a = 3.2735 A and b = 3.1012 A 

for ti and a - 3.1707 A and b - 3.2993 A for t2. The A V -

0.063 A^ for these two phases indicating that the phase 

transition is first order. Also, it is interesting to note 

that both ti and t2 have the same {111} diffraction line 

because the bond lengths are the same for both phases in 

equilibrium. The phase diagram based on the X-ray 

diffraction data with full lines for the investigated region 

was shown in Figure 1-6. The regions enclosed by broken 

lines are schematic and were constructed so as to agree with 

Landau theory and the Gibbs-Konovalow equation. 

The Landau theory can be applied to the c -• t^ -> t2 

transitions because these transitions meet the following 

conditions: (1) P4/mmm is a subgroup of Pm3m; (2) the 

transition corresponds to the Eg irreducible representation 

of the cubic group at the zone center; (3) the product of 

the antisymmetrized square with the vector representation 

does not contain the identity representation, meeting the 

Lifschltz condition as shown in Table I-l. Furthermore, a 

third-order invariant exists requiring that there should be 

a third-order term in the expansion of the Gibbs free energy 

in the order parameter, and thus that the transition should 

occur as a first-order transition. 
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Table I-l The application of Lifschitz condition for Eg 

E 00
 
o
 

w
 

6C2 6C4 3C2 i 6S4 asg 3 ah 6 ad 

g2 E m
 

u
 

00 

6E 6C2 3E E 6C2 8C3 3E 6E . 

x(g) 2 -1 0 0 2 2 0 -1 2 0 

x(g2) 2 -1 2 0 2 2 0 -1 2 2 

x2(g) 4 1 0 0 4 4 0 1 4 0 

x2(g)-x(g2) 2 2 -2 0 2 2 0 2 2 -2 

v(g) 3 3 -1 1 -1 -3 -1 0 1 1 

V(g.){x2(g)-x(g2)} 6 0 2 0 — 2  -6 0 0 2 -2 

ï V{gMx2(g) - X(g2)} - 0. 

It has been shown^S that the sign of the third-order 

term determines whether c/a > 1 or c/a < 1, and thus the 

observation that both t^ and t2 are stable phases requires 

that the coefficient of the third-order term should vanish 

at some of the states under consideration. This conclusion 

in turn leads to the following as the appropriate Landau 

expansion of G in the order parameter Y\ (corresponding to 

the Eg irreducible representation of Pm3m at the zone 

center) 

G - G° + A + B ^3 + C n* + D 
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where G° is the Gibbs free energy of the cubic phase and the 

coefficients are functions of T and X ( = nĵ  ̂/ n̂ ĵ  ) at 

constant pressure. A > 0 (otherwise the value h = 0 would 

correspond to a maximum of G), B > 0 when t^ is stable and B 

< 0 when t2 is stable^^, C < 0, and D > 0 (otherwise G goes 

toward minus infinity for large values of h and G would 

decrease without bound). A variety of circumstances is then 

possible for a given t-X point: X1) c stable (Figure I-

7(d)); (2) c and t^ stable (Figure I-7(b)); (3) t^ stable 

(Figure I-7(c)); (4) t^ and t2 coexist (Figure I-7(d)); (5) 

t2 stable (Figure I-7(e)); (6) c, t^, and t2 coexist (Figure 

I-7(f)). Figures I-7(b), lT7(d), and I-7(f) represent 

hypothetical equilibria because for each diagram the 

coexisting phases would have the same value of X. What must 

be considered, in addition to the phase change, is the 

redistribution of components allowing the compositions to 

change. 

For example, consider a stable system at 110°C with 

Mn/Au = 1.00. When the sample is cooled to some temperature 

in the c + t^ two-phase region Figure 1-7(b) is appropriate 

for the hypothetical equicomposition equilibrium of c and 

ti, and redistribution of gold and manganese results in 

coexistence of c and t with different compositions. Further 

cooling to temperatures below the c + t^ two-phase region 

results in the situation of Figure I-7(c). 
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Somewhere in the t^ + t2 two-phase region, B - 0 and 

Figure I-7(d) is appropriate for the hypothetical 

equicomposition equilibrium and redistribution of gold and 

manganese results in the two-phase t^ + t2 equilibrium. 

Similarly further cooling would eventually result in the 

situation of Figure I-7(e), and t2 would then be stable with 

respect to phase change. 

The points defined by B - 0 in t^ and t2 two-phase 

region define a T-X line. If the states along this line {t^ 

and t2 coexist)) are considered with increasing temperature, 

then because A increases with T (relative to the magnitudes 

of B and C) eventually the circumstance of Figure ll-7(f), 

i.e., hypothetical coexistence of c, t^ and t2 all with the 

same X, would be reached. After redistribution a c + t^ + 

t2 three-phase equilibrium would result. This line of 

reasoning is the basis for the broken line extensions shown 

in Figure 1-6. 
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Figure I-l The currently accepted phase diagram for the 

Au-Mn system.1 The phase has the CsCl-type 

structure and the Pi with c/a < 1 and 02 with 

c/a > 1 phase have the AuCu-type structure 
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Figure 1-4 Comparison of calculated and observed 

diffraction patterns for Au/Mn - 1.05 at room 

temperature 
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CONCLUSIONS 

Observations in the AuMn homogeneity using powder X-ray 

diffraction at temperatures between 25 and 150°C demonstrate 

that the transitions c ^ t^ t2 occur consecutively as 

first-order phase transitions with decreasing temperature. 

An allowed continuation of the T-X phase diagram is 

suggested via broken lines in Figure 1-6. 
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SECTION II PHASE TRANSITIONS IN RhTi 
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INTRODUCTION 

Several structures for phases in the homogeneity range 

of RhTi were listed in the Atomic Energy Review in 1983 on 

basis of X-ray diffraction data.?- Some of the structures 

are as follows; the stoichiometric RhTi alloy at 700°C is 

tetragonal, AuCu-type, with a - 4.173 A and C • 3.354 A and 

5-RhTi at low temperature is monoclinic with a - 2.96 A, b -

2.81 A, c " 3.41 A, and P - 90°37'; RhggTidg is 

orthorhombic, NbRu-type, with a = 4.15 A, b "4.11 A, and c -

3.40 A; RhggTigg at high temperature is cubic, CsCl-type, 

with a • 3.11 A. The accepted phase diagram^ (see Figure 

II-l) shows that RhTi has a CsCl-type structure at high-

temperature and it distorts to a AuCu-type phase with 

decreasing temperature as a second-order phase transition. 

No orthorhombic phase is in this diagram. 

There are several reasons why the subject of the phase 

transitions in RhTi is interesting. First, the structures 

and the phase behavior were not clearly understood. Second, 

the high-temperature structures of RhTi may not be obtained 

by quenching and their study necessitates the use of high-

temperature X-ray diffraction. Finally, the phase 

transitions in RhTi provide an excellent example for tests 

of the application of Landau theory^-S and band theory to^ 

the understanding of the relationship between structure and 

bonding in solids. As a result, the phase transitions in 
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RhTi were studied between room temperature and 1000°C in 

this work by a variety of crystallographic techniques, 

including high-temperature X-ray powder diffraction.^'® 
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RESULTS 

The regions of transition temperature within +100°C of a 

transition were studied with was particular care. The 

samples were held on a molybdenum holder which was 

maintained at constant temperature (+1®C) during X-ray scans 

between 28 slightly less than 20° and 29 as high as 90°. 

Long heating at high temperature resulted in observable 

surface oxidation (oxide diffraction peaks in the vicinity 

of 20 - 37.5°). In order to avoid complications arising 

from oxidation the length of time the sample was at high 

temperature was minimized by collecting data for the lines 

in the 110 family that split initially into a pair and 

finally into a triplet. The measurement of the 20 values 

for these lines allowed calculation of r for the monoclinic 

case which is equivalent to the orthorhombic case because 

the a and b lattice parameters of the monoclinic structure 

are the same. The high-temperature cubic structure was 

found to be tetragonal and to further distort to 

orthorhombic with decreasing temperature as shown in Figure 

II-2. The structure data for RhTi are listed in Table II-l. 

The principal results are as follows. 

(1) For T > 900°C a simple-seven line powder pattern was 

observed. The positions, but not always the intensities, 

were those of the CsCl-type (Pm3m). The line positions 

dictate the structure type. The mismatch between calculated 



www.manaraa.com

69 

and observed intensities varied depending upon thermal 

treatment and was not improved by allowing for 

substitutional disorder. A pattern which provided a 

relatively good fit is shown in Figure II-3. It is 

concluded that there is preferred orientation in the as-

grown cubic RhTi (from tetragonal RhTi, see below). 

(2) For 900*C > T > 700®C a powder pattern with 

splitting of the cubic 110 family of diffraction lines into 

triples of lines was observed. The intensity of center line 

decreases and the intensities of the other two lines 

increase simultaneously with decreasing temperature. It is 

clear that two phases coexist in the region. The center 

line originates from the cubic 110 family, and the other two 

lines originate from the tetragonal 101 and 110 families, 

respectively. The coexistence of cubic and tetragonal RhTi 

indicates that the phase transition is first-order. 

(3) For 700°C > T > 83°C the cubic 110 family of 

diffraction lines disappears completely. The powder 

diffraction pattern was fitted well with a tetragonal model 

(see Figure II-4) with c/a varying from 1 at 900°C to 1.093 

at 200*0, and 1.121 at 83°C (calculated from the data shown 

in Figure II-5 by Rietveld refinement). 
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Table ll-l RhTi phases 

1000»C Cubic, CsCl-type 

Pra3m 

a » 3.126 A 

U
 

o
 

m
 

C
O
 

Tetragonal, AuCu-type 

P4/mmm 

a • 2.988 A 

c • 3.350 A 

25°C Orthorhombic, NbRu-type or Monoclinic 

a » 4.144 A a = 2.960 A 

b - 4.229 A b = 2.960 A 

c - 3.366 A c • 3.366 A 

Y - 90.17° 

The principal structure change in this temperature range 

is the large decease in the Rh-Rh and Ti-Ti distances in the 

planes perpendicular to the unique tetragonal axis. This 

change occurs with an essentially constant Rh-Ti distances 

(2.70 A) and amounts to a 0.13 Â decrease in the in-plane 

like atom distances and a 0.23 A increase along the unique 

axis. 

(4) For 83*C > T > 25°C the structure further distorts 

yielding orthorhombic symmetry (see Figure II-5). The major 

experimental effect is the splitting of the two lines at 20 
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- 43° to 44» (by about 0.7* = 6 (28) at 25°C). The 

principal structure change in this temperature is that the 

ratio a/b is equal to one, while the Y angle (see Figure II-

2) distorts continuously from 90° to 91.17° with decreasing 

temperature (see Figure II-6) in the region. In fact, the 

monoclinic cell containing one Rh and one Ti is equivalent 

to an end-centered orthorhombic cell with two Rh and two Ti 

(Figure II-2). Therefore, the two lines obtained from a 

splitting of the tetragonal 110 family of diffraction lines 

belong to the orthorhombic 200 family and 020 family, 

respectively. The phase transition between the tetragonal 

and the orthorhombic which occurs without the coexistence of 

two phases indicates that the transition could be second-

order. 

(5) Subsequent attempts to fit the single, weak 

diffraction at 20 = 20° thought to be a superstructure 

reflection have not be successful,® principally because 

Since the best estimate for the 29 location of the low-angle 

line is not in good agreement with a superstructure of the 

lattice determined by the substructure diffraction peaks. 

Therefore, the low-angle diffraction line originates from 

impurity phase. It possibly is the low-temperature form of 

RhTi2 with MoSi2-type structure.1 
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Figure II-l The currently accepted phase diagram for the 
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Figure 11-4 Comparison of calculated and observed 

diffraction patterns for tetragonal RhTi at 

83°C. The diffraction at 20 = 59° has its 

origin in the molybdenum sample holder 
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DISCUSSION 

The sequence of a first-order distortion from cubic to 

tetragonal followed by a second-order distortion from 

tetragonal to orthorhorabic observed for RhTi is in complete 

agreement with the predictions of Landau theory. The cubic 

-> tetragonal distortion at k = 0 corresponds to eg small 

representation of Pm3m to which there corresponds a third-

order invariant requiring a first-order transition. Since 

this distortion corresponds to a single irreducible 

representation it is possible for the transition to follow a 

single order parameter and appear second-order at 

temperatures sufficiently removed from the transition 

temperature. Thus, the overall behavior observed, namely 

c/a tending towards unity with increasing temperature 

(Figure II-5), followed by the appearance of a cubic-

tetragonal two-phase region, is in agreement with the Landau 

theory of the eg representation (see Chapter I). 

The 1-dimensional irreducible representation B^g in 

P4/mmm is given in Table II-2. The basis function 

Table II-2 The 1-D irreducible representation B^g in 04^ 

E 2C4 C2 2C2' 2C2" i 2S4 (Th 2(Ty 2ffd 

1 - 1 1  1  - 1 1  - 1 1  1  - 1  
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transforms into itself under the symmetry operations E, C2, 

2C2', i, (Th 2ffy to yield space group Cmmm. The space 

group Cmmm contains half as many symmetry elements as the 

group Pm3m. According to the Landau theory^, for every 

transition involving the halving of the number of symmetry 

operations of the crystal, a second-order phase transition 

is possible. Therefore, the Landau theory straightforwardly 

allows a second-order phase transition between P4/mmm and 

Cmmm at the k - 0 point, and this transition appears to 

occur in a second-order fashion. 

The relation between the electronic structure of RhTi 

and the transition from the high-temperature cubic CsCl 

structure to the tetragonal structure has been studied by 

Folkerts and Haas,® using the augmented spherical wave (ASW) 

method. Based on ligand-field effect, they deduced that the 

first neighbors form a cubic coordination, with a ligand-

field splitting with t2g at higher energy than eg,* the 

second neighbors form an octahedral coordination, with 

inverted ligand-field effect. 

The band of mainly Ti 3d eg character is 25 % occupied 

and contains one electron. This is favourable situation for 

a Jahn-Teller instability. In the tetragonal case the 3d eg 

band is split into two bands. The Fermi energy Cp is 

lowered by 0.03 eV in comparison with the cubic phase. The 

density of the states at ep is lowered by 30 %. The total 

energy is lowered by 0.04 eV (unit cell)"^. Thus the band 
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structure calculation shows a greater stability for the 

tetragonal phase. 
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SECTION III PHASE TRANSITIONS AND HETEROGENEOUS 

EQUILIBRIA IN THE NbRu HOMOGENEITY RANGE 
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INTRODUCTION 

Earlier work has shown the structures and the phase 

transitions in near-equiatomic Nb-Ru alloys as summarized 

below. Greenfield and Beck^ found by X-ray diffraction and 

microscopic methods that Nb-Ru alloys between 48 and 49 

atomic % Ru have a body-centered tetragonal structure and 

that an alloy containing 32 atomic % Ru has a body centered 

cubic structure when quenched from 1200°C to room 

temperature. Raub and Pritzsche^ confirmed the presence of 

a body-centered tetragonal phase between 41 and 46.5 atomic 

% Ru and further reported alloys having a face-centered 

orthorhombic structure in the composition range between 47 

and 58 atomic % Ru. Hurley and BrophyS showed that an alloy 

containing 35 atomic % Ru has a body-centered cubic 

structure. Das, Schmerling, and Lieberman^ studied phase 

transitions in three near-equiatomic Nb-Ru alloys by 

electrical resistivity measurements, hot stage optical 

metallography. X-ray diffraction, and magnetic 

susceptibility measurements. Although the cubic phase could 

not be found by quenching in their investigation, a 

requirement for the presence of the cubic phase found in 

previous works^'^ was alloys of lower Ru content. They 

deduced that the high temperature cubic phase transforms to 

a face-centered tetragonal structure on cooling and that the 
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latter transforms to a face-centered orthorhombic phase on 

further cooling. 

A recent study by high-temperature X-ray diffraction of 

the phase transitions in RhTi (Chapter II) indicated similar 

behavior. Such systems are currently of theoretical 

interest because of the application of band-theory methods 

to the consideration of symmetry breaking transitions. 

Furthermore, in spite of the previous discoveries, none of 

the structures discussed above, nor any information below 

1000°C, appear in the accepted phase diagram.5 Thus it was 

necessary to fill in the gap in our understanding of this 

system. It was therefore decided to investigate the phase 

transition and the phase diagram for NbRu^+x by high-

temperature (up to 1200°C) X-ray diffraction, using full-

profile refinement of powder X-ray diffraction data from 

single-phase and two phase samples.® 
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RESULTS 

The high-temperature form (above 1000 to llOO'C) of 

NbRuijoo' NbRui,i3, and NbRui,27 found to be cubic 

(Figure III-l). The small difference in the Nb and Ru 

atomic scattering factors did not permit the distinction 

between the CsCl-type and bcc-type structures. However, a 

very weak {001} diffraction line of the orthorhombic 

NbRui,27 on Guiner X-ray pattern at room temperature was 

found in this study. Furthermore, previous works? have, by 

analogy with RuTa, assumed that the structure is CsCl-type, 

an assumption that is supported by the similarity of the 

phase behavior with RhTi, which also has the CsCl-type 

structure at high temperatures. It is observed that the 

phases with these compositions transformed into a tetragonal 

structure via a first-order transition (the cubic and 

tetragonal phases were observed coexisting in samples held 

at temperatures between 880 and 1000°C with the temperature 

range depending upon the Nb/Ru ratio). It is was 

furthermore observed that at temperatures in the range 720 

to 920®C, depending upon the Nb/Ru ratio, the samples 

transformed between tetragonal and orthorhombic symmetry in 

what appeared to be a continuous (no two-phase coexistence 

observed) symmetry breaking transition. Diffraction 

patterns for the tetragonal and orthorhombic phases are 

shown in Figures III-2 and III-3. The orthorhombic-
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hexagonal (Mg-type structure) coexistence as shown in the 

diffraction patterns of Figure III-4 was observed for 

NbRui.sQ. 

The crystal data from the earlier work^ for the Nb-Ru 

alloys in near equiatomic region are given in Table Ill-l 

and the crystal data obtained from this work by Rietveld 

refinement for NbRu^+x are given in Table III-2. The 

tetragonal lattice of Table IV-1 is equivalent to a •J2 x -J2 

superstructure of that in Table III-2. The room-temperature 

data are in,fairly good agreement. The thermal behavior 

observed in this work, together with the results of the 

earlier work as described above, can be represented on a T-X 

phase diagram with composition in the region of 40 to 60 

atomic % Ru as shown in Figure III-5. 

Table III-l The crystal data obtained from Reference 4 

at room temperature 

Ru(%) Crystal Structure 

Lattice 

a 

Parameter 

b 

(A) 

c 

45.8 Face-centered tetragonal 4.388 3. 311 

51.1 Face-centered orthorhombic 4.373 4.228 3. 401 

55.8 Face-centered orthorhombic 4.295 4.192 3.439 
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Table III-2 The crystal data obtained from this work* 

Phase Parameter ( A )  Scale 

Rh(%) TCO Symmetry abc Factor(%) Rg 

50 25 Cmmm 4.363 4.232 3.400 

54 1115 Pm3m 3.184 4.14 

1000 P4/mmm 3.110 3.332 5.43 

25 Cmmm 4.332 4.232 3.416 6.88 

56 25 Cmmm 4.300 4.217 3.430 

60 25 Cmmm 4.2888 4.198 3.453 1.55x10-4 4.77 

25 P63/ramc 2.763 4.443 1.65x10-4 8.82 

*The lattice parameters for alloys containing 50 and 56 

atomic % Ru were determined by LLR refinement program? and 

Rg is Bragg R-factor. 
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re III-l The diffraction pattern observed for NbRui^ig 

at 11150c and the pattern calculated assuming 

the CsCl-type structure 
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Figure III-2 The calculated and observed diffraction 

patterns for tetragonal NbRui.13 and Mo (the 

material of the sample holder) at lOOCC 
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Figure 1II-3 The calculated and observed diffraction 

patterns for orthorhombic NbRuiig at room 

temperature 
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Figure III-4 The calculated and observed diffraction 

patterns for orthorhombic NbRui+x and 

hexagonal NbRui+y with Ru/Nb - 1.50 overall at 

room temperature 



www.manaraa.com

93 

cubic 

cubic + 
tetragonal G 1000 

o s ortha =3 

S tetragonal hex" a> 

£ 
f 500 orthorhombic 

60 45 50 
Atomic % Ru 

Figure III-5 The NbRu T-X phase diagram based upon data 

obtained in this study (black dots) and 

literature data at room temperature 
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DISCUSSION 

As in the case of RhTi, investigations in the NbRu^+x 

system using powder X-ray diffraction between room-

temperature and 1200°C show that the phase transition from 

cubic to tetragonal is first-order, and from tetragonal to 

orthorhombic is second-order. The Landau theory®"^^ can be 

applied to these two stage transitions as discussed in 

Section II. 

Both NbRu and RhTi have 13 valence electrons and the 

atomic sizes of Nb and Ru are very close to Ti and Rh 

respectively. Therefore, the relation between the 

electronic structure of NbRu and the transition from the 

high-temperature cubic to the tetragonal structure may be 

similar to that for RhTi as discussed by Folkerts and Haas^l 

using the augmented spherical wave (ASM) method. With the 

same argument, the band of mainly Nb 4d eg character is 25 % 

occupied and contains one electron. This is a favorable 

situation for a Jahn-Teller instability. In the tetragonal 

structure the Nb 4d eg band is split into two bands. 
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SECTION IV PHASE TRANSITIONS AND HETEROGENEOUS 

EQUILIBRIA IN THE RuTa HOMOGENEITY RANGE 
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INTRODUCTION 

Several papers dealing with the phase behavior in the 

RuTa homogeneity range have appeared in the literature since 

Beck and Greenfield^ (1956) reported that the 38 atomic % Ru 

alloy has the CsCl-type structure, and that alloys with 

containing composition between 45 and 50 atomic % Ru 

apparently have a tetragonal structure when quenched from 

1200*C to room temperature. Next, Hartley, Baun, Fisher, 

and RapperportZ found that the alloy at 30 atomic % Ru has 

the CsCl-type structure and that alloys between 40 and 45 

atomic % Ru quenched from 1500°C have a tetragonal 

structure. They suggested that a tetragonally distorted 

CsCl-type structure may be formed from cubic CsCl-type on 

cooling. A reviewer stated,3 "high-temperature X-ray work 

will be necessary to resolve these ambiguities." After 

that, Rudman* further confirmed the presence of CsCl-type 

and tetragonal phases. At the almost same time, Raub, 

Beeskow, and Fritzsche reported^ that alloy at 50 atomic % 

Ru is a face-centered orthorhombic (fco) structure, and that 

alloy at 55 atomic % Ru is a face-centered tetragonal (fct) 

structure when quenched from 1600°C. 

Although the investigation of the structures and the 

phase behavior in near equiatomic Ru-Ta alloys has been 

extensively studied, no information below 1300°C is 

presented in the accepted phase diagram.& Schmerling, Das, 
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and Lieberman? have investigated phase transitions in such 

systems with X-ray powder diffraction at room temperature 

and resistance, metallographic, and susceptibility 

measurements as a functions of temperature. The results 

suggested "two step" phase transitions cubic -> tetragonal -> 

orthorhombic.• Again, they were unable to obtain the cubic 

phase in quenched alloys. A pseudophase diagram was 

constructed based on their.study (see Figure IV-1). 

However, analysis of the phase boundaries in the phase 

diagram using the Gibbs-Konovalow equation® and the phase 

law indicated some unresolved problems. For example, the 

phase diagram at 50 atomic % Ta shows that (9X/9T)p - 0 and 

ÛX # 0. In fact, (3X/3T)p - 0 requires that ÛX - 0. 

Furthermore, the T-X line between ~47.5 (~650°C) and ~54 

(~420®C) atomic % Ta, contrary to the phase law, shows the 

coexistence of three phases. 

Among the nonstoichiometric compounds with the cubic 

CsCl-type structure at high temperatures a number (MnAu,® 

RhTi,10'll and NbRu^^) are known to undergo thermal symmetry 

breaking transitions upon cooling. The transitions in RhTi 

and NbRu are first to tetragonal in a first-order 

transition, then to end-centered orthorhombic in a second-

order transition. Such behavior is of interest in 

connection with electron-phonon interactions and martensitic 

transitions. Because of the similarity of the behavior of 

RuTa, as described above, to that of NbRu, and the 
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uncertainty in the nature of the phase behavior of RuTa,? 

high-temperature (up to 1650°C) X-ray diffraction 

investigation was undertaken using full-profile refinement 

of powder X-ray diffraction data from single-phase and two 

phase samples in the range 0.49 < Ru/Ta < 1.60.12 
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RESULTS 

The known lattice symmetries and parameters at room 

temperature for various samples in the RuTa homogeneity 

range are summarized in Table IV-1. These lattices, 

although unconventionally described as face-centred in some 

cases (the conventional tetragonal cell is primitive, the 

conventional orthorhombic cell is end-centered) suffice to 

describe the phase behavior of samples in the neighborhood 

of RuTa. Samples richer than 57.2 atomic % Ru were found to 

contain hexagonal close-packed solid solution phase at all 

temperatures up to 1500°C. The results of 13 refinements 

for seven compositions at various temperatures are given in 

Table IV-2. Nine of the resultant data sets were analyzed 

by Rietveld refinement. The patterns, together with the 

calculated profiles, are shown in Figures IV-2 to IV-10. 

The lattice parameters for the rest were determined by the 

LLR program.13 

In Table IV-2, the first column gives the synthetic 

composition (estimated uncertainty < +1.1 %), second column 

gives the temperature as determined by W-Re thermocouples 

(estimated uncertainty < ±20°C), the third column lists the 

mass lost during synthesis, the fifth column gives, where 

appropriate, the reference to Figures V-1 to V-10, the sixth 

column gives the space group symmetries (Pm3m for the CsCl-

type structure, P4/mmm for the tetragonal distortion without 
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loss of translational symmetry, and Cmmm for the 

orthorhombic distortion without loss of translational 

symmetry), the seventh-ninth column gives the lattice 

parameters (estimated uncertainty = +5 x 10"^ Â) and the 

last column gives the defined Bragg R values from the 

results of Rietveld refinement. 
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Table lV-1 The lattice parameters from the previous work 

RU(%) Phase a (A) b (A) c (A) Reference 

37.5 C 3.181 3 

40 T 3.155 3.206 3 

40 T 3.114 3.277 4 

45 T 3.096 3.297 3 

45 PCT 4.387* 3.320 6 

47.7 FCT 4.385 4.277 3.376 6 

50 0 4.351 4.199 3.388 4 

50 FCO 4.368 4.241 3.387 6 

55 T 4.271* 3.395 4 

55 FCT 4.288* 3.385 6 

*The lattice containing four atoms is equivalent to a 

•J2 X ^2 superstructure of that containing two atoms. 
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CONCLUSIONS 

The investigation of the phase transitions by high-

temperature X-ray diffraction in alloys of Ru-Ta within the 

composition range from 33 to 62 atomic % Ru yields the phase 

diagram shown in Figure IV-10. The room temperature data 

obtained from this work are in good agreement with those 

obtained from the earlier work as listed in Table IV-1. The 

transitions from cubic-to-tetragonal and from tetragonal-to-

orthorhombic are both first-order transitions. The former 

is required by Laudau theory to be first-order, the latter 

may be second-order but is not. For both RhTi^®'^^ and 

NbRull it is was concluded that the tetragonal-to-

orthorhombic transition is second-order. The difference 

between a first-order and second-order when the Landau and 

Lifshitzl4 conditions are met, as they are for this 

distortion at the r point, results from a difference in the 

sign of the fourth-order term in the Gibbs free-energy 

expansion, i.e., if it is positive a second-order phase 

transition will occur when the second-order term changes 

sign, if it is negative only a first-order transition can 

occur. 
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Figure lV-2 The calculated and observed diffraction 

patterns for Ru/Ta - 0.664 at room temperature. 

Cubic and tetragonal phases present 
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Figure IV-3 The calculated and observed diffraction 

patterns for Ru/Ta - 0.869 at room temperature. 

Tetragonal and orthorhombic phases present 
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Figure IV-4 The calculated and observed diffraction 

patterns for Ru/Ta - 1.00 room temperature. 

Orthorhombic phase present 
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Figure IV-5 The calculated and observed diffraction 

patterns for Ru/Ta - 1.00 at 730»C. Tetragonal 

and orthorhombic phases present 
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Figure lV-6 The calculated and observed diffraction 

patterns for Ru/Ta - 1.00 at 900°C. Tetragonal 

phase presently 
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Figure lV-7 The calculated and observed diffraction 

patterns for Ru/Ta • 1.00 at 1160°C. Cubic 

phase present 
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Figure lV-8 The calculated and observed diffraction 

patterns for Ru/Ta - 1.07 at room temperature. 

Tetragonal and orthorhombic phases present 
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Figure IV-9 The calculated and observed diffraction 

patterns for Ru/Ta « 1.60 at room temperature. 

Tetragonal and hexagonal phases present 
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IV-10 The calculated and observed diffraction 

patterns for Ru/Ta • 1.60 at 1640°C. Cubic 

and hexagonal phases present 
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Figure IV-11 The temperature-composition diagram for Ta-Ru 

in the neighborhood of TaRu 
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SECTION V PHASE TRANSITIONS IN IrTii+x 
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INTRODUCTION 

The currently accepted phase diagram^ for the Ir-Ti 

system given in Figure V-1 shows that IrTi alloys in a wide 

homogeneity range of 39 to 55 atomic % Ir have a CsCl-type 

structure at high temperature and distort to a monoclinic 

structure (a • 2.990 A, b • 2.883 Â, c = 3.525 A , and g -

90*52' for Ir/Ti • 1) with decreasing temperature as a 

second-order phase transition. The phase diagram is based 

on the investigation by Eremenko and Shtepa^ using thermal 

analysis, X-ray diffraction, and metallographic measurement. 

In disagreement with this phase diagram, Raman and Schubert^ 

reported that IrTi (annealed at 820°C) has a face-centered 

orthorhombic structure (a - 4.174 A, b - 4.107 A, and c = 

3.460 A), that irggTiag has a AuCu-type structure (a - 4.409 

A and b - 3.51 A), and that IrggTigg possibly has a CsCl-

type superstructure (a - 9.375 A). 

Because of the similarity of the behavior of IrTi to 

that of RhTi^fS, NbRu^, and RuTa® the phase transitions c -» 

t ^ o in IrTi could be expected. The high-temperature X-ray 

investigation described here was undertaken in order to 

better understand the phase behavior of this system. 
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Alloys, IrTi, Ir^gTigs, and irggTigg, were examined by 

powder X-ray diffraction from room temperature to the 

melting point. The X-ray data for IrTi and IrggTigg were 

analyzed by Rietveld refinement and that for Ir^gTigg was 

analyzed by the LLR refinement.? The results are as 

follows. Contrary to the accepted phase diagram, the high-

temperature form of IrTi and Ir^gTigs is the AuCu-type 

structure rather than the cubic structure,1 and the low-

temperature form of both is the NbRu-type structure rather 

than the monoclinic structure.! The phase transition 

appears to occur continuously, i.e., as a second-order 

transition. The powder diffraction patterns for IrTi at 

1020*C (a " 2.9484 A and b - 3.4986 Â) and at room 

temperature (a - 4.1628 Â, b = 4.1017 A, and c = 3.4172 A) 

are given in Figures V-2 and V-3 respectively. The lattice 

parameters a - 4.1866 A, b « 4.1087 A, and c - 3.4567 A were 

found for ir^gTigs at room temperature. The IrggTigg alloy 

has the CsCl-type structure, and no second phase was found 

for this composition. The powder diffraction patterns at 

room temperature (a = 3.1149 A) are given in Figure V-4. 

These results indicate that a cubic, CsCl-type, homogeneity 

range is separated from a tetragonal, AuCu-type, range by a 

two phase gap, whereas an orthorhombic, NbRu-type, region is 

separated from the tetragonal region by a second-order 
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transition line passing through Ir/Ti - 1, T « lOOCC and 

Ir/Ti 0.82, T « 400*C. 
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Figure V-1 The accepted phase diagram for Ir-Til 
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Figure V-2 The calculated and observed diffraction patterns 

for tetragonal irTi at 1020*C 
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Figure V-3 The calculated and observed diffraction patterns 

for orthorhombic IrTi at room temperature 
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Figure V-4 The calculated and observed diffraction patterns 

for cubic IrggTigg at room temperature 
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DISCUSSION 

The crystal data are in good agreement with those 

reported by Raman and Schubert^ except the conventional 

orthorhombic cell should be end-centered rather than face-

centered. The previous report of a monoclinic cell was not 

confirmed. In fact, the monoclinic cell, if a = b, is 

equivalent to an end-centered orthorhombic cell. No CsCl-

type superstructure was found. 

As in the case of RhTi^'S g^d NbRu®, a second-order 

phase transition from tetragonal to orthorhombic in IrTi 

within the homogeneity range is in agreement with the 

predictions of Landau theory®'^ as described previously.4,5 



www.manaraa.com

125 

REFERENCES 

1. Massalski, T. B.; Murray, J. L.; Benett, L. H.; Baker, 
H. "Binary Alloy Phase Diagrams"; American Society for 
Metals: Metals Park, OH, 1986. 

2. Eremenko, V. N.; Shtepa, T. D. Russ. Metall. 1970, 6, 
127. 

3. Raman, A.; Schubert, k. Z. Metallkd. 1964, 55, 704. 

4. Yi, S. S.; Chen, B. H.; Franzen, H. F. J. Less-Common 
Met. 1988, 143, 243. 

5. Chen, B. H.; Franzen, H. F. J. Less-Common Met. 1989, 
153, L13. 

6. Chen, B. H.; Franzen, H. F. J. Less-Common Met, in 
press. 

7. Chen, B. H.; Jacobson, R. A., to be published. 
Department of Chemistry, Iowa State University. 

8. Toledano, J. -C.; Toledano, P. "The Laudau Theory of 
Phase Transition"; World Scientific Lecture Notes in 
Physics, Vol. 3, World Scientific Publishing: 
Singapore, 1987. 

9. Landau, L.; Lifshitz E. "Statistical Physics"; Pergamon 
Press: London, 1958. 



www.manaraa.com

126 

SECTION VI A SECOND-ORDER PHASE TRANSITION IN VGJLRAG 
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INTRODUCTION 

The binary system V-Ir has been studied previously by 

Giessen, Dangel, and Grant.^ All samples were annealed at 

1800°C before X-ray measurement. It was found that two 

structures exist for nominally 1:1 V-lr intermetallic 

phases, one with P4/mmm symmetry and c/a « -J2 and a AuCu-

like structure between 52+1 to 59+1 atomic % Ir, the other 

with Cmmm symmetry between 50+0.5 to 51+0.5 atomic % Ir. 

Although they recognized that the orthorhombic structure can 

be regarded as a distorted AuCu-type superstructure by axial 

reorientation, the heterogeneous relationship between these 

phases was not determined. They suggested that the two 

structures occur in different composition ranges with a 

first-order transition between them, as indicated in the 

previous phase diagram.! 

In the studyZ reported here, a single composition, 

namely Vg^Ir^g, was studied by high-temperature powder X-ray 

diffraction using Rietveld full-profile refinement. An 

apparent second-order transition at about 506*0 was 

observed. The Landau theory^"^ was found to allow a second-

order transition to a tetragonal symmetry with doubling of 

both lattice parameters a and c yielding in a body-centered 

cell. 
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RESULTS 

At temperatures above 506°C the powder diffraction 

pattern of the V-Ir sample was consistent with the 

tetragonal structure with, to a first approximation, Ir at 

the origin and V at the body center. The diffraction 

pattern from the sample at 556®C is given in Figure VI-1. 

At temperatures below 506°C the tetragonal symmetry was 

broken to yield an orthorhombic distortion, the extent of 

distortion was observed to vary continuously with 

temperature. The diffraction pattern from the sample at 

room temperature is given in Figure VI-2. The structural 

Results given in Table VI-1 yielded by Rietveld refinement 

for both patterns show that the orthorhombic structure has 

the lattice parameters a^ = 2atet' ̂ o ^^tet' snd Cq « 

®tet • 

Table VI-1 The structural results for Vg^Ir^g 

Lattice 
T(®C) Symmetry Parameters(A) 

Atomic Positions 
(x, y, z) 

556 P4/mram a - 2.770 
c " 3.651 

Ir: 0, 0, 0 
V; 0.5 0.5 0.5 

2 5 Cmmm a " 5.797 
b • 6.762 
c = 2.805 

ir: 0, 0.2178, 0.5 
V; 0.2871, 0, 0 
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DISCUSSION 

The second-order phase transition from tetragonal to 

orthorhomblic observed for Vg^Ir^g is in complete agreement 

with the predictions of Landau theory.^-4 The group Cmmm is 

a subgroup of P4/mmm. The transition from P4/mmm to Cmmm 

doubles the periods along a" and c° (or, equivalently, along 

b° and c°) and thus corresponds to k » (a* + c*)/2 (or (b* + 

c*)/2). The groups of these wave vectors contain the 

essential symmetry operations of Cmmm because the 

translations by 2a*, 2c®, and a® + c° remain, while by a® 

and c° are lost. Thus the distortion corresponds to the 

totally symmetric small representation at one of these two k 

points. The two k vectors form a star, and basis functions 

for the corresponding two-dimensional representation are i|)i 

- cosnz cosKx and *2 - cosnz cosny. There are no third-

order combinations that are not antisymmetric under 

transition by a® (or b°) of the tetragonal lattice, thus the 

transition meets the first three conditions of Landau 

theory. The fourth condition is also met since inversion is 

in the group of the wave-vector. 

There are two independent fourth-order invariants, namely 

+ ^2^ and and thus two fourth-order terms, + 

Y2^ and yi^Y2^' in the expansion of the Gibbs free-energy. 

However, yî Y2^ can be eliminated by using (yî  + Y2^)^ " 1. 

Thus G to terms of fourth-order is: 



www.manaraa.com

130 

G - G» + + [Cl + C2 (YI^ + Y24)]n4 

There are two possible minima under the constraint y i^ + Y2^ " 

1 for this G. On one hand, if C2 < 0, yi • 1 and y2 " 0 (or 

vice versa). The stable structure is given by p - p" + 

On the other hand, if C2 > 0, yi • Y2 " 1/^2. The stable 

structure is given by p - p° + (*i + *2)0/^2. The first 

yields the distortion observed in Vg^Ir^g showing that this 

transition can, by Landau theory, occur as a second-order 

process. The second solution has l4/mmm symmetry with a = Za" 

and c - 2c° and atoms in the positions: 0, 0, 1/4 +5; 0, 1/2, 

1/4; 1/4 - e, 1/4 - c, 0. The structure of AgInLa2 has been 

reported to be of this type.® 

At high-temperatures the Ir-V intermetallic studied here 

has a tetragonal structure that is best described as a 

superstructure of the disordered, cubic close-packed 

structure, with tetragonal symmetry arising from alteration of 

layers of (predominantly) Ir and V along one of the cubic 

axial directions. Upon cooling this tetragonal symmetry 

undergoes a symmetry breaking which can be viewed as the 

alternate lengthening and shortening of trans M-M distances in 

chains of M2M4' octahedra (M and M' alternate between Ir and V 

(Figure VI-3)). The continuous character of the transition 

suggests that it occurs as the result of a Fermi level 

instability at (aj + cJ)/4. 
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Figure VI-1 The calculated and observed diffraction 
patterns for tetragonal Ir-V at 556*. The 
extra line at 26 « 41® arises from the sample 
holder 
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Figure VI-2 The calculated and observed diffraction 
patterns for orthorhombic Ir-V at room 
temperature. The locations of the diffraction 
maxima arising from the sample holder are 
indicated by the upper set of vertical marks 
just above the horizontal axis 
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Figure VI-3 The Ir-V structure viewed along the short (c) 
axis of the orthorhombic form. The relative 
scales are calculated from the structures 
reported here (P4/mmm symmetry (on the left) at 
556*C, Cmmm symmetry (on the right) at room 
temperature) 
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APPENDIX A: THE PROGRAM FOR LATTICE PARAMETER 

REFINEMENT IN CRYSTAL SYSTEMS WITH 

ORTHORHOMBIC SYMMETRY OR HIGHER 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C LINEAR LEAST-SQUARES LATTICE PARAMETER REFINEMENT C 
C (LLR) C 
C C 
C PURPOSE; C 
C Use a linear least-squares method to refine C 
C lattice parameters for crystal with symmetry C 
C orthorhombic or higher. C 
C C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

REAL TT(500),W(500),E(4,4),D(4),KA1,KA2 
COMMON N,M,ER,HH,A,B,C,LI 
KA1=1.540562 
KA2=1.544390 
READ(8,*)N,CTH, (TTd) ,I=1,N) 
TYPE 30 

30 FORMAT(IX,'$ INPUT 0-2TH') 
ACCEPT*,TO 
TYPE 40 

40 FORMAT(IX,'$MAX INDEX') 
ACCEPT*,M 
TYPE 50 

50 F0RMAT(1X,'$ REFINE 0-TH ?(N=0,Y=1)') 
ACCEPT*,LI 
DO 90 1=1,N 
TT(I)=TT(I)+TO 
TW=TAND(TT(I)/2.)/TAND(CTH/2.) 
W(I)»(2.*KAl+(l.-TW)*KA2)/(3.-TW) 

90 IF(TW.GE.l) W(I)=KA1 
TYPE 95 

95 FORMATdX,'$LIMITED ERR IN 2THETA' ) 
ACCEPT*,ER 

100 TYPE 110 
110 FORMATdX,'$ INDEX: 1.CUBIC 2.HEXA 3.TETRA 4 . ORTH( TY: 1. 2 . 
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ACCEPT*,HH 
TYPE 120 

120 FORMATdX,'$D0 YOU WISH TO GIVE A,B,C ? N=0, Y==l ' ) 
ACCEPT*, LP 
IF(LP.EO.O) GO TO 140 
TYPE 125 

125 F0RMAT(1X,'TYPE A,B, AND C) 
ACCEPT*, A,B,C 
IF(HH.EQ.l) KK=1+LI 
IF(HH.EQ.2.0R.HH.EQ.3) KK=2+LI 
IF(HH.EQ.4) KK=3+LI 
CALL MATCH(TT,W,KK,E,D) 
GO TO 150 

140 IF(HH.EQ.l) CALL CUBIC(TT,W) 
IF(HH.EQ.2.0R.HH.EQ.3) CALL HANDT(TT,W) 
IF(HH.EQ.4) CALL ORTH(TT,W) 

150 STOP 
END 

C ***************** CUBIC ******************* ^ 

SUBROUTINE CUBIC(TT,W) 
DIMENSION TT{N),R{8,500),W(N),E(4,4),D(4) 
INTEGER Hl,Kl,Li,MM,MMM,Nl 
COMMON N,M,ER,HH,A,B,C,LI 
TYPE 200 

200 FORMATdX,'$INPUT Hi, Kl,Ll, #PEAK') 
ACCEPT*,Hi,Kl,Ll,N1 
A=0.5*W(N1)*SQRT(FLOAT(Hl*Hl+Kl*Kl+Ll*Ll))/SIND(TT(Nl)/2.) 
WRITE(6,210) 

210 FORMAT('1',15X,'IÎI IitÎI I ! I I CUBIC i! ! !Î! ! IÎ!ÎI'/) 
WRITE(6,220)H1,K1,L1,TT(N1) 

220 FORMATdOX,'HKL ' , 3Il, 5X, ' 2-THETA', F7 . 2 ) 
B=A 
C=A 
KK=3+LI 
CALL HATCH(TT,W,KK,E,D) 

RETURN 
END 
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******* HEXAGONAL AND TETRAGONAL ******* 

SUBROUTINE HANDT(TT,W) 
REAL TT(N),R(8,500),X,W(N),E(3,3),D(3) 
INTEGER Hl,Kl,Ll,H2,K2,L2,MM,MMM,Nl,N2 
COMMON N,M,ER,HH,A,B,C,LI 
F(X)»SIND(X)**2 
TYPE 310 
FORMAT(IX,'$INPUT Hi,Kl,Li,#PEAK') 
ACCEPT*,HI,K1,L1,N1 
TYPE 320 
FORMAT(IX,'$INPUT H2,K2,L2,#PEAK') 
ACCEPT*,H2,K2,L2,N2 
IF(HH.EQ.2) THEN 
WRITE(6,325) 
FORMAT('1',15X,'I I I I I I I I I I HEXAGONAL I 1 I ! I I IiI I'/) 
TYPE 330 
FORMATdX, ' I ; ( (Hl*Hl+Kl*Kl+Hl*Kl ) (L2*L2 ) '/ 
IX,'-(H2*H2+K2*K2+H2*K2)*(L1*L1)).NE.ZERO') 
D1»W(N1)**2*FL0AT(H1*H1+K1*K1+H1*K1)/3. 
D2=W(N2)**2*FL0AT(H2*H2+K2*K2+H2*K2)/3. 

ELSE 
WRITE(6,355) 
FORMAT('1',15X,'I ! I I I I I I I I TETRAGONAL I IllI I I I I I'/) 
TYPE 365 
FORMATdX, ' I ;( ( H2*H2+K2*K2 )Ll*Ll-( Hl*Hl+Kl*Kl )L2*L2 ) .NE.O'/) 
D1=W(N1)**2*FL0AT(Hl**2+Kl**2)/4. 
D2=W(N2)**2*FL0AT(H2**2+K2**2)/4. 

ENDIF 
WRITE(6,370)H1,K1,L1,H2,K2,L2,TT(N1),TT(N2) 
FORMATdOX, 'HKL ' , 3ll, 2X, 3ll, 5X, '2-THETA' ,2F7.2) 
C1=(W(N1)*FL0AT(L1))**2 
C2=(W(N2)*FL0AT(L2))**2 
AA=(F(TT(N2)/2.)*Cl-F(TT(Nl)/2.)*C2)/{D2*C1-D1*C2) 
CC=(F(TT(Nl)/2.)*D2-F(TT(N2)/2.)*Dl)/(D2*C1-D1*C2) 
A»1./SQRT(AA) 
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B=A 
C=0.5/SQRT(CC) 
KK=2+LI 
CALL MATCH(TT,W,KK,E,D) 

RETURN 
END 

C*********************** ORTHORHOMBIC ******************************** 

SUBROUTINE ORTH(TT,W) 
REAL TT{N),R(8,500),0(3,3),BB(3),W(N),T(3),E(4>4),D(4) 
INTEGER 10(3,3),IN(3) 
COMMON N,M,ER,HH,A,B,C,LI 
WRITE(6,400) 

400 FORMAT(15X,'!ÎI ! Ii!Î Î! ORTHORHOMIC I I ! I Î ! Î ! Î Î '/ 
1 4X,'H K L',10X,'2-THETA') 

TYPE 405 
405 FORMAT(IX'$INPUT HKL(l),#Pl,HKL(2),#P2,HKL(3),#P3'/) «-

ACCEPT*,((ID(I,J),J=1,3),IN(I),I=1,3) % 
DO 410 1=1,3 

T(I)=TT(IN(I)) 
V=W(IN(I)) 
BB(I)=SIND(T{I)/2.)**2 

DO 410 J=l,3 
410 0(I,J)=(FL0AT{ID(I,J))*V)**2 

WRITE(6,420) ((ID{I,J),J=1,3),T(I),I=1,3) 
420 FORMAT(12X,3I2,10X,F6.2) 

KKK=3 
KS=0 
CALL SIMQ(0,BB,KKK,KS) 
A=0.5/SQRT(BB(1)) 
B=0.5/SQRT(BB(2)) 
C=0.5/SQRT(BB(3)) 
KK=3+LI 
CALL MATCH(TT,W,KK,E,D) 

RETURN 
END 
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SUB HATCH ***************************** 

SUBROUTINE MATCH(TT,W,KK,E,D) 
REAL TT(N) ,R( 8, 500 ), E( KK, K-X) ,D( KK ) ,TR( 8 , 500 ) ,W( N) ,G(4) 
INTEGER NNN,NN,LL,II,JJ,H,k,L,KKl 
COMMON N,M,ER,HH,A,B,C,LI 
WRITE(6,800)A,B,C 

800 FORMATdOX,'INITIAL:IX,'A , F8 . 5, 3X,'B = ' , F3 . 5 , 3X, ' C =',F8.5) 
DD=0. 
MM=0 
TYPE 805 

805 F0RMAT(3X,'# OF' CYCLES ?') 
ACCEPT *, III 

810 NN=0 
MM=MM+1 
DO 850 L=0,M 
DO 850 K=0,M ^ 
DO 850 H=0,M o 
IF(HH.EQ.2) THEN 
CT=SQRT(FLOAT(H*H+K*K+H*K)/(3.*A*A)+(FLOAT(L)/(2.*C))**2) 

ELSE IF(HH.EQ.3) THEN 
CT=0.5*SQRT(FLOAT(H*H+K*K)/(A*A)+{FLOAT(L)/C)**2) 

ELSE 
CT=0.5*SQRT((H/A)**2+(K/B)**2+(L/C)**2) 

ENDIF 
LL—0 
DO 820 1=1,N 
TTM=CT*W(I) 
IF(TTM.GE.l.) GO TO 850 
CTT=2.*ASIND(TTM) 
EM=TT(I)-CTT 
IF(ABS(EM).GE.ER) GO TO 820 
LL=LL+1 
TR(1,LL)=TT(I) 
TR(2,LL)=CTT 
TR(3,LL)=ABS(EM) 
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TR(4,LL)=0.02/TAND(TT(I)/2.) 
TR(5,LL)=FL0AT(I) 
TR(6,LL)=FL0AT(H) 
TR(7,LL)=FL0AT(K) 
TR(8,LL)=FL0AT(L) 

820 CONTINUE 
IF(LL.EQ.O) GO TO 850 
IF(LL.EQ.l) GO TO 830 
NNN=3 
CALL BUBB(TR,LL,NNN) 

830 NN=NN+1 
DO 840 1=1,8 

840 R(I,NN)-TR(I,1) 
850 CONTINUE 

ER=0.9*ER 
IF(MM.EQ.III) GO TO 980 
DO 870 1=1,KK 
DO 870 J=1,KK 
E(I,J)=0. 

870 D(J)=0. ' 
DO 950 1=1,NN 
JJ»IFIX(R(5,I)) 
P=SIND(R(l,I)/2.)**2 
IF(HH.EQ.2) THEN 
G(1)=4.*(R(6,I)**2+R(6,I)*R{7,I)+R(7,I)**2)*(W(JJ)**2)/3. 

ELSE IF(HH.EQ.3) THEN 
G(1)=(R(6,I)**2+R(7,I)**2)*(W(JJ)**2) 

ELSE 
G(1)=(R(6,I)*W(JJ))**2 
G(2)=(R(7,I)*W(JJ))**2 

END IF 
G(KK-LI)={R(8,I)*W(JJ))**2 

IF(LI.EO.O) GO TO 935 
G(KK)=-SIND(R(1,I))/2. 

935 DO 940 J=1,KK 
D(J)=D(J)+P*G(J) 
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DO 940 K=1,KK 
940 E(K,J)=E(K,J)+G(K)*G(J) 
950 CONTINUE 

KS=0 
CALL SIHQ(E,D,KK,KS) 
A=0.5/SQRT(D(1)) 
B=A 
IF(HH.EQ.1.0R.HH.EQ.4) 8=0.5/SQRT(D{2)) 
C=0.5/SQRT(D(KK-LI)) 
IF(LI.EQ.O) GO TO 810 
TD=2.*D{KK)*45./ATAN(1.) 
DD=DD+TD 
DO 970 1=1,N 

970 TT(I)=TT(I)+TD 
GO TO 810 

980 WRITE(6,985)A,B,C,DD 
985 FORMATdOX,'FINAL; ' ,3X,'A =',F8.5,3X,'B =',F8.5,3X,'C =',F8.5, 

1 3X,'0-THE =',F7.3) ^ 
MMM=1 w 
CALL BUBB(R,NN,MMM) 
CALL PRINT(R,NN) 

RETURN 
END 

C************************* SUB BUBB ********************* 

SUBROUTINE BUBB(R,NN,H) 
REAL R(8,NN) 
INTEGER NN,NI,NJ,H 
NI=NN-1 
DO 1020 K=1,NI 
NJ=NN-K 
DO 1020 L=1,NJ 
IF(R(H,L).LE.R(H,L+1)) GO TO 1020 
DO 1010 1=1,8 
TEMP=R(I,L) 
R(I,L)=R(I,L+1) 

1010 R(I,L+1)=TEMP 
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1020 CONTINUE 
RETURN 

END 
C 
C****************** PRINTING RESULTS ******************* 
C 

SUBROUTINE PRINT(R,NN) 

REAL R(8,500),RR(4,500),SS(2,500),ST 
INTEGER 11(4,500),NN 
ST=0. 
DO 1030 1=1,NN 
SS(l,I)»SIND(R(l,I)/2.)**2 
SS(2,I)=SIND(R(2,I)/2.)**2 
ST=ST+R(3,I)**2 

DO 1030 J-1,4 
II(J,I)=IFIX(R(J+4,I)) 

1030 RR(J,I)=R(J,I) 
ST=SQRT(ST/FLOAT(NN-1)) 
WRITE(6,1035)ST 

1035 FORMATdOX,'STANDARD DEVIATION', Fl6 . 6/) 
WRITE(6,1040) 

1040 FORMATdOX,'#?',2X, ' H K L ' ,2X,'02T', 5X,'C2T', 
1 5X,'DIFF',5X,'DE',5X,'OSIN',6X,'CSIN'/) 

DO 1055 J=1,NN 
WRITE(6,1050) (II(I,J),1=1,4),(RR(I,J),1=1,4),(SS(I,J),1=1,2) 

1050 F0RMAT(9X,I3,1X,3I4,1X,2F8.3,2F8.3,2F9.5) 
1055 CONTINUE 

WRITE(6,1060) 
1060 FORMAT(/IOX,'* DE—0.02/TAN(THETA)'/) 

RETURN 
END 

C 
C 

SUBROUTINE SIMQ{A,B,N,KS) 
DIMENSION A(l),B(1) 



www.manaraa.com

c FORWARD SOLUTION 
C 

TOL=0.0 
KS=0 
JJ=-N 
DO 65 J=1,N 
JY=J+1 

J+N+1 
BIGA=0 
IT=JJ-J 
DO 30 I=J,N 

C 
C SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN 
C 

IJ=IT+I 
IF(ABS(BIGA)-ABS(A(IJ))) 20,30,30 

20 BIGA=A(IJ) 
IMAX=I 

30 CONTINUE 
C 
C TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) 
C 

IF(ABS(BIGA)-TOL) 35,35,40 
35 KS=1 

RETURN 
C 
C INTERCHANGE ROWS IF NECESSARY 
C 

40 Il=J+N*(J-2) 
IT=IMAX-J 
DO 50 K=J,N 
Il=Il+N 
I2=I1+IT 
SAVE=A{I1) 
A{I1)=A(I2) 
A(I2)=SAVE 
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DIVIDE EQUATION BY LEADING COEFFICIENT 

50 A(I1)=A(I1)/BIGA 
SAVE=B(IMAX) 
B(IMAX)=B(J) 
B(J)»SAVE/BIGA 

ELIMINATE NEXT VARIABLE 

IF(J-N) 55,70,55 
55 IQS=N*(J-1) 

DO 65 IX=JY,N 
IXJ=IQS+IX 
IT=J-IX 
DO 60 JX=JY,N 
IXJX=N*(JX-1)+IX 
JJX=IXJX+IT 

60 A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX)) 
65 B(IX)=B(IX)-(B(J)*A(IXJ)) 

BACK SOLUTION 

70 NY=N-1 
IT=N*N 
DO 80 J=1,NY 
IA=IT-J 
IB=N-J 
IC=N 
DO 80 K=1,J 
B(IB)=B(IB)-A(IA)*B(IC) 
IA=IA-N 

80 IC=IC-1 
RETURN 
END 
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APPENDIX B: THE PROGRAM FOR LATTICE PARAMETER 

REFINEMENT IN CRYSTAL SYSTEMS WITH 

MONOCLINIC SYMMETRY 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C LATTICE REFINEMENT PROGRAM FOR MONOCLINIC CELL C 
C (MONO) C 
C C 
C PURPOSE; C 
C Use a Gridls least-squares method to refine C 
C lattice parameters for monoclinic symmetry. C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

REAL TT(IOO),W(500),KA1,KA2 
COMMON N,M,ER,A,B,C,SB,CB,BETA 
KA1»1.540562 
KA2=1.544390 
READ(8,*)N,CTH,(TT(I),I=1,N) 
TYPE 30 

30 F0RMAT(1X,'$ INPUT 0-2TH') 
ACCEPT*,TO 
TYPE 40 

40 FORMATdX,'$MAX INDEX') 
ACCEPT*,M 
DO 90 1=1,N 
TT(I)=TT(I)+T0 
TW=TAND(TT(I)/2.)/TAND(CTH/2.) 
W(I)=(2.*KA1+(1.-TW)*KA2)/(3.-TW) 

90 IF(TW.GE.l) W(I)=KA1 
TYPE 95 

95 FORMATdX,'$LIMITED ERR IN 2THETA' ) 
ACCEPT*,ER 
CALL MONO(TT,W) 

STOP 
END 
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C******************** MONOCLINIC *************************** 
SUBROUTINE MONO(TT,W) 
REAL TT(N),0(4,5),BB(4),W(N),T(4) 
INTEGER ID(4,3),IN(4),MI,MJ 
COMMON N,M,ER,A,B,C,SB,CB,BETA 
TYPE 100 

100 FORMAT(IX,'$INPUT BETA') 
ACCEPT*, BETA 
SB=SIND(BETA) 
CB=COSD(BETA) 
WRITE(6,400) 

400 F0RMAT(17X,'! I I 1 ! I n I Î MONOCLINIC ii I IÎ! I IiI'// 
1 4X,'H K L',4X,'2-THETA',4X,'BETA') 

TYPE 402 ' 
402 FORMATdX,'$D0 YOU WISH TO GIVE A,B,C? N=0,Y=1') 

ACCEPT*, AP a. 
IF(AP.EQ.O) GO TO 404 ® 
TYPE 403 

403 FORMATdX,'$TYPE A,B,C') 
ACCEPT*, A,B,C 
GO TO 425 

404 TYPE 405 
405 FORMATdX,'$INPUT HKLd ) , #Pd ) . . . ,HKL( 4 ) , #P( 4 ) V) 

ACCEPT*,((ID(I,J),J=1,3),IN(I),1=1,4) 
DO 410 1=1,4 

T(I)=TT(IN(I)) 
V=W(IN(I)) 
0(I,4)=FL0AT(ID(I,1)*ID(I,3)) 
0(I,5)=(SIND(T(I)/2.)/V)**2*4. 

DO 410 J=l,3 
410 0{I,J)=FL0AT(ID(I,J))**2 

WRITE(6,420) ((ID(I,J),J=1,3),T(I), BETA,1=1,4) 
420 FORMATd3X,3l2,4X,F6.2,F9.2) 
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KN=4 
KL=5 
CALL LE(0,KN,KL,BB) 
A=1./(SQRT(BB(1))*SB) 
B=«1./SQRT(BB(2) ) 
C»1./(SQRT(BB(3))*SB) 
KK»4 

425 CALL MATCH(TT,W,KK,E,D) 
RETURN 

END 
C************************* SUB MATCH ***************************** 

SUBROUTINE MATCH(T-T,W,KK,E,D) 
DIMENSION TT(N),R(8,500),D(4),TR(8,500),W(N), 

1 X(3,500),Y{500),DELTAA(4),SIGMAA(4),yFIT(500) t-
INTEGER NNN,NN,LL,II,JJ,H,K,L 
COMMON N,M,ER,A,B,C,SB,CB,BETA 
WRITE(6,800)A,B,C 

800 FORMAT!IIX,'INITIAL;',3X,'A',F8.4,3X,'B',F8.4,3X,'C',F8.4) 
11=0 
ED*1. 
TYPE 880 

880 FORMAT ( IX # OF INTERACTIONS') 
ACCEPT *,INTER 

810 NN=0 
11=11+1 
ER=ER*0.9 
ED=ED*0.9 
DO 850 L=-M,M 
DO 850 K=0,M 
DO 850 H=0,M 
CCTT=((H/A)**2-2.*CB*FL0AT(H*L)/(A*C)+(L/C)**2)/SB**2 
CT-SQRT(CCTT+(K/B)* * 2) 
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LL=0 
DO 820 1=1,N 
TTM=0.5*CT*W(I) 
IF(TTM.GE.L.) GO TO 850 
CTT=2.*ASIND(TTM) 
EM=ABS(CTT-TT(I)) 
IF(EH.GE.ER) GO TO 820 
LL=LL+1 
TR(1,LL)=FL0AT(I) 
TR{2,LL)=FL0AT(H) 
TR(3,LL)=FL0AT(K) 
TR(4,LL)=FL0AT(L) 
TR(5,LL)=TT(I) 
TR(6,LL)=CTT 
TR(7,LL)=EM ' 
TR(8,LL)=0.02/TAND(TT(I)/2.) 

820 CONTINUE 
IF(LL.EQ.O) GO TO 850 
IF(LL.EQ.L) GO TO 830 
NNN=7 
CALL BUBB(TR,LL,NNN) 

830 NN=NN+1 
DO 840 1=1,8 

840 R(I,NN)=TR(I,1) 
850 CONTINUE 

IF (II.EQ.INTER) GO TO 900 
c************* DATA FOR LEAST SQUARE **************** 

NTERHS=4 
D(1)=1./(A*SB) 
D(2)=L./B 
D(3)=1./(C*SB) 
D(4)=CB 
DO 870 1=1,NN 
JJ=IFIX(R(1,I)) 
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y(I)=4.*(SIND(R(5,I)/2.)/W(JJ))**2 
X(1,I)=R(2,I) 
X(2,I)=R(3,I) 

870 X(3,I)=R(4,I) 
DO 860 1=1,3 

860 DELTAA(I)=D(I)*0.02*ED 
DELTAA(4)=D(4)*0.05*ED 
CALL GRIDLS(X,Y,NN,NTERMS,D,DELTAA, 

1 SIGMAA,YFIT,CHISQR) 
BETA=AC0SD(D(4)) 
SB=SQRT(1.-D(4)**2) 
CB»D(4) 
A=1./(D(1)*SB) 
B=l./D(2) 
C=1./(D(3)*SB) ui 
TYPE 884,CHISQR,A,B,C,BETA 

884 FORMATdX, 'CHISQR' ,E12.4,5X, ' A' , F8. 5, 5X, ' B ' , F8 . 5, 5X, ' C , F8 . 5, 
1 5X,'BETA',F7.3) 

DO 970 1=1,NN 
970 TT(I)=TT(I)+TD 

GO TO 810 
900 WRITE(6,985)A,B,C,DD,BETA 
985 FORMATdlX, 'FINAL; ' , 5X, ' A' , F8 . 4 , 3X, ' B' , F8 . 4 , 3X, ' C ' , F8. 4/ 

1 12X,'0-THE',F6.3,5X,'BETA',FlO.3) 
MMM=1 
CALL BUBB(R,NN,MMM) 
CALL PRINT!R,NN,CHISQR) 

RETURN 
END 

C************************* SUB BUBB ********************* 
SUBROUTINE BUBB(R,NN,H) 
REAL R(8,NN) 
INTEGER NN,NI,NJ,H 
NI=NN-1 
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DO 1020 K=1,NI 
NJ»NN-K 
DO 1020 L=1,NJ 
IF(R(H,L).LE.R(H,L+1)) GO TO 1020 
DO 1010 1=1,8 . 
TEMP=R(I,L) 
R(I,L)=R(I,L+1) 

1010 R(I,L+1)=TEMP 
1020 CONTINUE 

RETURN 
END 

C****************** PRINTING RESULTS ************************** 
SUBROUTINE PRINT(R,NN,CHISQR) 

REAL R(8,200) ,SS(2,200) ,ST 
ST=0. k) 
DO 1030 1=1,NN 
SS(l,I)=SIND(R(5,I)/2.)**2 
SS(2,I)=SIND(R(6,I)/2.)**2 

1030 ST=ST+R(7,I)**2 
ST=SQRT(ST/FLOAT(NN-1)) 
WRITE(6,1035)ST,CHISQR 

1035 FORMATdlX,'STAN. DEV. ( 2-THE ) ' , F8 . 4 , 8X, ' CHISQR', El2 . 4/) 
WRITE(6,1040) 

1040 F0RMAT(12X,'#P',4X,'H',4X,'K',4X,'L',4X,'02T', 
1 5X,'C2T',4X,'DIFF',5X,'DE',4X,'OSIN',4X,'CSIN') 

DO 1055 J=1,NN 
WRITE(6,1050) (R(I,J),1=1,8), (SS(I,J),1=1,2) 

1050 FORMAT(10X,4F5.0,2F7.2,2F8.4,2F8.5) 
1055 CONTINUE 

WRITE(6,1060) 
1060 FORMAT(/IIX,'* DE—0.02/TAN(THETA)'/) 
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RETURN 
END 

C*********** SOLVE LINEAR EQUATIONS (L=N+1) ************** 
SUBROUTINE LE(A,N,L,X) 
DIMENSION A(N,L), X{N) 

DO 60 K=1,N-1 
J=K 
DO 10 I=K+1,N 

10 IF(ABS(A(J,K)).LT.ABS(A(I,K))) J=I 
IF(J.EQ.K) GO To 40 
DO 30 I=K,L 

T=A(K,I) 
A(K,I)=A(J,I) 

30 A(J,I)=T 
40 DO 50 M=K+1,N 

D=-A(M,K)/A(K,K) 
DO 50 I=K,L 

50 A(M,I)=A(M,I)+D*A(K,I) 
60 CONTINUE 

X(N)=A(N,L)/A(N,N) 
DO 100 J=1,N-1 

K=N-J 
SUM=0. 
DO 80 1=1,N-K 
M=K+I 

80 SUH=SUM+A(K,M)*X(M) 
100 X(K)=(A(K,L)-SUM)/A(K,K) 

RETURN 
END 
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INPUT FUNCTION *********************** 

FUNCTION FUNCTN(X,I,A) 
DIMENSION X(3,1),A(1) 
FUNCTN»(A(1)*X{1,I))**2+(A(2)*X(2,I))**2+(A(3)*X(3,I))**2 

1 -2.*A(1)*A(3)*A(4)*X(1,I)*X(3,I) 
RETURN 

END 
C********************************************************************* 

SUBROUTINE GRIDLS(X,Y,NPTS,NTERMS,A,DELTAA,SIGMAA,YFIT,CHISQR) 

DIMENSION X(3,l),Y(1),A{1),DELTAA{1),SIGMAA(1),yFIT(l) 
DOUBLE PRECISION CHISQl,CHISQ2,CHISQ3 
FREE=FLOAT(NPTS-NTERMS) 
DO 90 J=l,NTERMS 
DO 22 1=1,NPTS 

22 YFIT(I)=FUNCTN(X,I,A) 
CHISQ1=FCHISQ(Y,NPTS,YFIT) 
FN=0. 
DELTA=DELTAA(J) 

41 A(J)=DELTA+A(J) 
DO 43 1=1,NPTS 

43 YFIT(I)=FUNCTN(X,I,A) 
CHISQ2=FCHISQ(Y,NPTS,YFIT) 
IF(CHISQ1-CHISQ2)51,41,61 

51 DELTA=-DELTA 
A(J)=A(J)+DELTA 
DO 54 1=1,NPTS 

54 YFIT(I)=FUNCTN(X,I,A) 
SAVE=CHISQ1 
CHISQ1=CHISQ2 
CHISQ2=SAVE 

61 FN=FN+1. 
A(J)=A(J)+DELTA 
DO 64 1=1,NPTS 

64 YFIT(I)=FUNCTN(X,I,A) 
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CHISQ3=FCHISQ(Y,NPTS,YFIT) 
IF(CHISQ3-CHISQ2) 71,81,01 
CHISQ1=CHISQ2 
CHISQ2=CHISQ3 
GO TO 61 
DELTA=DELTA*(1./(1.+(CHISQ1-CHISQ2)/(CHISQ3-CHISQ2))+0.5) 
A(J)=A(J)-DELTA 
SIGMAA(J)=DELTAA(J)*SQRT(2./(FREE*(CHISQ3-2.*CHISQ2+CHISQl))) 
DELTAA(J)=DELTAA(J)*FN/3. 
CONTINUE 
DO 92 1=1,NPTS 
YFIT(I)=FUNCTN(X,I,A) 
CHISQR=FCHISQ(Y,NPTS,YFIT) 

RETURN 
END 

************************************************************** 

FUNCTION FCHISQ(Y,NPTS,YFIT) 
DIMENSION Y(1),YFIT(1) 
DOUBLE PRECISION FCHISQ 
FCHISQ=0. 
DO 100 1=1,NPTS 
F0RMAT(1X,3F8.5) 
FCHISQ-FCHISQ+(Y(I)-YFIT(I))**2/Y(I) 

RETURN 
END 
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GENERAL SUMMARY 

Phase transitions in binary intermetallic compounds with 

the CsCl-type structure have been studied by a novel 

combination of high-temperature powder X-ray diffraction and 

Rietveld full-profile refinement. The Landau theory of 

symmetry and phase transitions and the Gibbs-Knonvalow 

equation have been applied to understand the phase behavior 

of some systems with the CsCl-type structure. 

Alloys in near equiatomic MnAu have the CsCl-type 

structure with Pm3m symmetry at high temperature. With 

decreasing temperature the cubic phase distorts to the AuCu-

type tetragonal phase with P4/mram symmetry with c/a < 1 and 

then further distorts to another AuCu-type tetragonal phase 

with c/a >1. 

The nonstoichiometric compounds RhTi, NbRu, and RuTa 

with the CsCl-type structure at high temperature undergo 

thermal symmetry breaking transitions upon cooling. The 

transitions are first to the AuCu-type tetragonal, and then 

to the orthorhombic NbRu-type with Cmmm symmetry. Alloys 

Ir-Ti which are titanium rich have the CsCl-type structure. 

This cubic structure transforms to the AuCu-type tetragonal 

structure and then to the NbRu-type structure with 

increasing atomic percent iridium. 

The high-temperature form of nonstoichiometric VIr has 

the AuCu-type structure, and the low-temperature form is the 
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VIr-type orthorhombic structure with Cmmm symmetry. The 

lattice parameters for the orthorhombic structure are a = 

2atet' b = 2btet' and c = ^tet* The phase transition 

appears to occur continuously. 

New partial phase diagrams for the composition ranges in 

near equiatomic MnAu, NbRu, and RuTa are also presented. 
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